YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Zen Guard Gen

8B Generative Safety Moderation Model

🌐 Website β€’ πŸ€— Hugging Face β€’ πŸ“„ Paper β€’ πŸ“– Documentation


Introduction

Zen Guard Gen is an 8B parameter generative safety classification model for comprehensive prompt and response moderation. It's the larger variant of the Zen Guard family, providing highest accuracy for batch processing scenarios.

Features

  • πŸ›‘οΈ 8B Parameters: Maximum accuracy for safety classification
  • 🌍 119 Languages: Multilingual safety moderation
  • 🚦 Three-Tier Classification: Safe, Controversial, Unsafe
  • πŸ“Š 9 Safety Categories: Comprehensive content analysis
  • ⚑ 120ms Latency: Optimized for batch processing

Model Specifications

Specification Value
Parameters 8B
Type Generative
Base Model Qwen3-8B
Context Length 32,768 tokens
Languages 119
Latency ~120ms
VRAM (FP16) 16GB
VRAM (INT8) 8GB

Quick Start

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "zenlm/zen-guard-gen"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# Prompt moderation
prompt = "How do I learn programming?"
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer([text], return_tensors="pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens=128)
result = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(result)
# Output: Safety: Safe
#         Categories: None

# Response moderation
response = "Here's a Python tutorial..."
messages = [
    {"role": "user", "content": prompt},
    {"role": "assistant", "content": response}
]
text = tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer([text], return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=128)
result = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(result)
# Output: Safety: Safe
#         Categories: None
#         Refusal: No

Deployment

# SGLang
python -m sglang.launch_server --model-path zenlm/zen-guard-gen --port 30000

# vLLM
vllm serve zenlm/zen-guard-gen --port 8000 --max-model-len 32768

Performance

Metric Zen Guard Gen
Accuracy 96.8%
F1 Score 94.2%
False Positive 2.1%

Related Models

License

Apache 2.0

Citation

@misc{zenguardgen2025,
    title={Zen Guard Gen: 8B Generative Safety Moderation},
    author={Hanzo AI and Zoo Labs Foundation},
    year={2025},
    publisher={HuggingFace},
    howpublished={\url{https://huggingface.co/zenlm/zen-guard-gen}}
}

Based On

Built upon Qwen3Guard-Gen-8B.


Zen AI - Clarity Through Intelligence
zenlm.org

Downloads last month
19
Safetensors
Model size
8B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for zenlm/zen-guard-gen

Quantizations
1 model