mental-longformer-base-4096-pr
This model is a fine-tuned version of AIMH/mental-longformer-base-4096 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9954
- F1 Macro: 0.6043
- Precision: 0.6255
- Recall: 0.6059
- Accuracy: 0.7596
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 240 | 1.9792 | 0.3899 | 0.4216 | 0.4264 | 0.6217 |
| No log | 2.0 | 480 | 0.8616 | 0.5735 | 0.5906 | 0.6019 | 0.7399 |
| 1.8862 | 3.0 | 720 | 0.8725 | 0.5853 | 0.5995 | 0.6155 | 0.7320 |
| 1.8862 | 4.0 | 960 | 0.8129 | 0.6137 | 0.6030 | 0.6326 | 0.7534 |
| 0.8633 | 5.0 | 1200 | 0.8869 | 0.6056 | 0.6206 | 0.6181 | 0.7622 |
| 0.8633 | 6.0 | 1440 | 0.9954 | 0.6043 | 0.6255 | 0.6059 | 0.7596 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 5
Model tree for rendchevi/mental-longformer-base-4096-pr
Base model
AIMH/mental-longformer-base-4096