tiny-sd-models
This is a DIFFUSION model trained with tiny-stable-diffusion.
Model Description
This is a Diffusion Transformer (DiT/MMDiT) trained for text-to-image generation in latent space.
Architecture
- Type: DiT or MMDiT (Multi-Modal Diffusion Transformer)
- Conditioning: CLIP text embeddings
Usage
import torch
from src.models.vae import create_vae # or appropriate model import
# Load checkpoint
checkpoint = torch.load("model.pt", map_location="cpu")
# Create model and load weights
model = create_model(...) # Use config from checkpoint
model.load_state_dict(checkpoint["model_state_dict"])
License
MIT License
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support