Dataset Viewer
Auto-converted to Parquet Duplicate
repo_name
string
combined_content
string
file_paths
list
0-Ajay-Bhargav-0/FashHUB
from django.shortcuts import render,redirect,reverse,HttpResponse from django.contrib.auth.models import User,auth from django.contrib import messages from .forms import ProfileForm,UserForm from .models import Profile def register(request): if request.method == 'POST': username = request.POST['username'] email = request.POST['email'] phone_number = request.POST['phone_number'] birth_date = request.POST['birth_date'] password1 = request.POST['password1'] password2 = request.POST['password2'] user = User.objects.create_user(username=username,email=email,password=password1) user.save() profile = Profile.objects.get(user=user) profile.phone_number=phone_number profile.birth_date=birth_date profile.save() print("user created") return redirect('/accounts/login') return render(request,'register.html') def login(request): if request.method=='POST': username=request.POST['username'] password=request.POST['password'] user=auth.authenticate(username=username,password=password) if user is not None: auth.login(request,user) print('login successful') return redirect('/') else: print("wrong credentials") return render(request,'login.html') def logout(request): auth.logout(request) print("logged out") return redirect('/') --- FILE SEPARATOR --- from django.contrib import admin from store.models import Product,Cart,Wishlist,Contact,events,Journal,Donations # Register your models here. admin.site.register(Product) admin.site.register(Cart) admin.site.register(Wishlist) admin.site.register(Contact) admin.site.register(events) admin.site.register(Journal) admin.site.register(Donations) --- FILE SEPARATOR --- # Generated by Django 2.2 on 2020-10-31 16:35 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Contact', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=300, null=True)), ('details', models.TextField(max_length=300, null=True)), ], ), migrations.CreateModel( name='Donations', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Name', models.CharField(max_length=300, null=True)), ('email', models.CharField(max_length=300, null=True)), ('phone_number', models.CharField(max_length=300, null=True)), ('address', models.CharField(max_length=300, null=True)), ('clothes_number', models.CharField(max_length=300, null=True)), ], ), migrations.CreateModel( name='events', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=300, null=True)), ('organizer_name', models.CharField(max_length=300, null=True)), ('details', models.TextField(max_length=300, null=True)), ('phone_number', models.IntegerField(blank=True)), ('email', models.CharField(max_length=300, null=True)), ], ), migrations.CreateModel( name='Journal', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('img_front', models.ImageField(blank=True, upload_to='')), ('img', models.ImageField(blank=True, upload_to='')), ('category', models.CharField(max_length=300, null=True)), ('title', models.CharField(max_length=300, null=True)), ('author', models.CharField(max_length=300, null=True)), ('details', models.CharField(max_length=300, null=True)), ], ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('mainimage', models.ImageField(blank=True, upload_to='')), ('img1', models.ImageField(blank=True, upload_to='')), ('img2', models.ImageField(blank=True, upload_to='')), ('img3', models.ImageField(blank=True, upload_to='')), ('price', models.FloatField()), ('studio_name', models.CharField(max_length=300, null=True)), ('size', models.CharField(max_length=300, null=True)), ('gender', models.CharField(max_length=300, null=True)), ('category', models.CharField(max_length=300, null=True)), ('rent_price', models.FloatField(null=True)), ('count', models.IntegerField(default=0)), ('rented', models.BooleanField(default=False)), ], ), migrations.CreateModel( name='Wishlist', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('item', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='store.Product')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Cart', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('item', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='store.Product')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ] --- FILE SEPARATOR --- # Generated by Django 2.2 on 2020-10-31 20:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('store', '0001_initial'), ] operations = [ migrations.AlterField( model_name='journal', name='details', field=models.TextField(max_length=1000, null=True), ), ] --- FILE SEPARATOR --- # Generated by Django 2.2 on 2020-10-31 20:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('store', '0002_auto_20201101_0205'), ] operations = [ migrations.AddField( model_name='journal', name='content', field=models.TextField(max_length=1000, null=True), ), migrations.AddField( model_name='journal', name='date', field=models.DateField(null=True), ), ] --- FILE SEPARATOR --- # Generated by Django 2.2 on 2020-10-31 21:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('store', '0003_auto_20201101_0222'), ] operations = [ migrations.RemoveField( model_name='events', name='details', ), migrations.AddField( model_name='events', name='bio', field=models.TextField(max_length=1000, null=True), ), ] --- FILE SEPARATOR --- from django.db import models from django.contrib.auth.models import User # Create your models here. class Product(models.Model): mainimage = models.ImageField(blank=True) img1 = models.ImageField(blank=True) img2 = models.ImageField(blank=True) img3 = models.ImageField(blank=True) # category = models.ForeignKey(Category, on_delete=models.CASCADE) # detail_text = models.TextField(max_length=1000, verbose_name='Detail Text') price = models.FloatField() studio_name = models.CharField(max_length=300,null=True) size = models.CharField(max_length=300,null=True) gender = models.CharField(max_length=300,null=True) category = models.CharField(max_length=300,null=True) rent_price = models.FloatField(null=True) count = models.IntegerField(default=0) rented = models.BooleanField(default=False) def __str__(self): return self.category class events(models.Model): name = models.CharField(max_length=300,null=True) organizer_name = models.CharField(max_length=300,null=True) bio = models.TextField(max_length=1000,null=True) #image = models.IntegerField(blank=True) #link = models.CharField(max_length=300,null=True) phone_number = models.IntegerField(blank=True) email = models.CharField(max_length=300,null=True) venue = models.CharField(max_length=300,null=True) date = models.DateField(null=True) def __str__(self): return self.name class Journal(models.Model): img_front = models.ImageField(blank=True) img = models.ImageField(blank=True) category = models.CharField(max_length=300,null=True) title = models.CharField(max_length=300,null=True) date = models.DateField(null=True) author = models.CharField(max_length=300,null=True) details = models.TextField(max_length=1000,null=True) content = models.TextField(max_length=1000,null=True) def __str__(self): return self.title class Contact(models.Model): name = models.CharField(max_length=300,null=True) details = models.TextField(max_length=300,null=True) def __str__(self): return self.name class Cart(models.Model): item = models.ForeignKey(Product, on_delete=models.CASCADE) user = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.item.category class Wishlist(models.Model): item = models.ForeignKey(Product, on_delete=models.DO_NOTHING) user = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.item.category class Donations(models.Model): Name = models.CharField(max_length=300,null=True) email = models.CharField(max_length=300,null=True) phone_number = models.CharField(max_length=300,null=True) address = models.CharField(max_length=300,null=True) clothes_number = models.CharField(max_length=300,null=True) --- FILE SEPARATOR --- """WASP URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('',views.index,name='index'), path('eventform/',views.eventform,name='eventform'), path('eventpage/',views.eventpage,name='eventpage'), path('event/<int:id>',views.event,name='event'), path('journal/',views.journal,name='journals'), path('journal/<int:id>',views.journal_page,name='journal_page'), path('products/<int:id>/',views.product,name='product'), path('cart/',views.showcart,name='cart'), path('addcart/<int:id>',views.addcart,name='addcart'), path('buy/<int:id>',views.buy,name='buy'), path('buycart/',views.buycart,name='buycart'), path('showWishlist/',views.showWishlist,name='showWishlist'), path('addWishlist/<int:id>',views.addWishlist,name='addWishlist'), path('removeWishlist/<int:id>',views.removeWishlist,name='removeWishlist'), path('donation/',views.donation,name='donation'), path('products/<str:gender>/<str:category>',views.genderCategory,name='genderCategory'), path('aboutus/',views.aboutus,name='aboutus'), # path('<str:gender>/<str:category>',views.,name='menbottom'), # path('<str:gender>/<str:category>',views.,name='menfootware'), # path('<str:gender>/<str:category>',views.,name='menaccessories'), # path('women/<str:category>',views.,name='womenshirt'), # path('women/bottom',views.,name='womenbottom'), # path('women/footware',views.,name='womenfootware'), # path('women/accessories',views.,name='womenaccessories'), # path('kids/shirt',views.,name='kidsshirt'), # path('kids/bottom',views.,name='kidsbottom'), # path('kids/footware',views.,name='kidsfootware'), # path('kids/accessories',views.,name='kidsaccessories'), # path('fluids/shirt',views.,name='fluidsshirt'), # path('fluids/bottom',views.,name='fluidsbottom'), # path('fluids/footware',views.,name='fluidsfootware'), # path('fluids/accessories',views.,name='fluidsaccessories'), ] # shirt # jeans # footware # sheatshirts # jackets # fitness # tshirts # ethnic # men, women, kid, fluids --- FILE SEPARATOR --- from django.shortcuts import render,redirect from .models import Contact,Journal,Product,Cart,Wishlist,events,Donations # Create your views here. def index(request): if request.method=='POST': email = request.POST['email'] message = request.POST['Message'] contact = Contact.objects.create(name=email,details=message) contact.save() # product = Product.objects.all() # context = { # 'product':product, # } return render(request,'index.html') def eventform(request): if request.method=='POST': username = request.POST['Event Name'] email = request.POST['email'] phone_number = request.POST['phone'] organization = request.POST['Organisation'] date = request.POST['date'] venue = request.POST['venue'] bio = request.POST['Bio'] event = events.objects.create(name=username,organizer_name=organization,bio=bio,phone_number=phone_number,email=email,venue=venue,date=date) event.save() return redirect('/eventform') return render(request,'eventreg.html') def eventpage(request): event = events.objects.all() context = { 'events':event, } return render(request,'events.html',context=context) def event(request,id): event = events.objects.get(id=id) context = { 'event':event, } return render(request,'event.html',context=context) def journal(request): journals = Journal.objects.all() context = { "journals":journals, } return render(request,'journal.html',context=context) def journal_page(request,id): journal = Journal.objects.get(id=id) context = { 'journal':journal, } return render(request,'journal-page.html',context=context) def aboutus(request): return render(request,'aboutus.html') # def products(request): # products = Product.objects.all() # context = { # "products":products, # } # return render(request,'products.html',context=context) def product(request,id): product = Product.objects.get(id=id) context = { "product":product, } return render(request,'product.html',context=context) def showcart(request): cart = Cart.objects.filter(user=request.user) context = { 'cart':cart, } return render(request,'cart.html',context=context) def addcart(request,id): product = Product.objects.get(id=id) Cart.objects.create(item=product,user=request.user) return redirect('/') def buy(request,id): product = Product.objects.get(id=id) product.count-=1 if product.count<0: product.count=0 product.save() return redirect('/') def buycart(request): cart = Cart.objects.filter(user=request.user) for item in cart: item.item.count-=1 if item.item.count<0: item.item.count=0 item.item.save() cart = Cart.objects.filter(user=request.user).delete() return redirect('/') def showWishlist(request): wishlist = Wishlist.objects.filter(user=request.user) context = { 'wishlist':wishlist, } return render(request,'wishlist.html',context=context) def addWishlist(request,id): product = Product.objects.get(id=id) Wishlist.objects.create(item=product,user=request.user) return redirect('/') def removeWishlist(request,id): product = Product.objects.get(id=id) Wishlist.objects.get(item=product).delete() return redirect('showWishlist/') #remove cart feature def genderCategory(request,gender,category): product = Product.objects.filter(gender=gender,category=category) context = { "product":product, "gender":gender, "category":category, } return render(request,'sproducts.html',context=context) def donation(request): if request.method=='POST': name = request.POST['name'] email = request.POST['email'] phone_number = request.POST['phone'] address = request.POST['address'] clothes_number = request.POST['clothes'] donation = Donations.objects.create(phone_number=phone_number,email=email,Name=name,address=address,clothes_number=clothes_number) donation.save() return render(request,'donations.html')
[ "/accounts/views.py", "/store/admin.py", "/store/migrations/0001_initial.py", "/store/migrations/0002_auto_20201101_0205.py", "/store/migrations/0003_auto_20201101_0222.py", "/store/migrations/0004_auto_20201101_0245.py", "/store/models.py", "/store/urls.py", "/store/views.py" ]
0-Yzx/FEELVOS
from itertools import combinations from cv2 import cv2 import os import natsort import pandas as pd import numpy as np import torch import torchvision from torch.utils.data import Dataset, DataLoader from torchvision.transforms import ToPILImage from torchvision import transforms, utils from feelvos.transform import preprocessing class FEELVOSTriple(Dataset): def __init__(self, root='./data/', split='train', transform=None): super().__init__() self.root = root self.split = split self.transform = transform self.folder_list = [] self.items = [] folder_f = open(os.path.join(root, self.split+"_folder_list.txt"), "r") for x in folder_f: self.folder_list.append(x[:-1]) for i in range(len(self.folder_list)): tmp_list = natsort.natsorted(os.listdir(os.path.join(root, 'image', self.folder_list[i]))) for j in range(len(tmp_list) - 2): first = tmp_list[j] for k in range(len(tmp_list[j+1:])-1): comb_1 = tmp_list[k+1] comb_2 = tmp_list[k+2] self.items.append((os.path.join(self.root, 'image', self.folder_list[i], first), os.path.join(self.root, 'image', self.folder_list[i], comb_1), os.path.join(self.root, 'image', self.folder_list[i], comb_2))) def __getitem__(self, index): src = [] mask = [] seltem = self.items[index] for i in range(3): src.append(cv2.imread(seltem[i])) mask.append(cv2.imread(os.path.join(seltem[i].split('/')[1], 'mask', seltem[i].split('/')[3], seltem[i].split('/')[4]))) sample = (src, mask) if self.transform is None: pass else: sample = self.transform(*sample) if self.split == 'train': sample[0][0] = sample[1][0] sample[0][1] = sample[1][1] return sample def __len__(self): return len(self.items) if __name__ == "__main__": ds_train = FEELVOSTriple(root='./data/', split='train', transform=preprocessing) ds_test = FEELVOSTriple(root='./data/', split='test', transform=preprocessing) print("DATA LOADED") --- FILE SEPARATOR --- import torch import torch.nn as nn from feelvos.models.Embeddings import DepthwiseSeparableConv2D class DynamicSegmentationHead(nn.Module): def __init__(self, cin, cout): super(DynamicSegmentationHead, self).__init__() self.depthwise_l = DepthwiseSeparableConv2D(cin, 256, 7) self.depthwise_r = DepthwiseSeparableConv2D(256, 256, 7) self.conv = nn.Conv2d(256, cout, 1) def forward(self, x): x = self.depthwise_l(x) x = self.depthwise_r(x) x = self.depthwise_r(x) x = self.depthwise_r(x) x = nn.ReLU(inplace=True)(x) x = self.conv(x) x = nn.Softmax2d()(x) return x --- FILE SEPARATOR --- import torch import torch.nn as nn import torch.nn.functional as F from modelsummary import summary class DepthwiseSeparableConv2D(nn.Module): def __init__(self, c_in, c_out, kernel_size=1, stride=1, padding=0, dilation=1, bias=False): super(DepthwiseSeparableConv2D,self).__init__() self.conv1 = nn.Conv2d(c_in, c_in, kernel_size, stride, padding, dilation, groups=c_in, bias=bias) self.pointwise = nn.Conv2d(c_in, c_out, 1, 1, 0, 1, 1, bias=bias) def forward(self, x): x = self.conv1(x) x = self.pointwise(x) return x class PixelwiseEmbedding(nn.Module): def __init__(self, c_in, c_out_1, c_out_2): super(PixelwiseEmbedding, self).__init__() self.separable = DepthwiseSeparableConv2D(c_in=c_in, c_out=c_out_1, kernel_size=3, stride=1, padding=1) self.conv1 = nn.Conv2d(c_out_1, c_out_2, kernel_size=1, stride=1, padding=0) def forward(self, x): x = self.separable(x) x = self.conv1(x) return x --- FILE SEPARATOR --- from cv2 import cv2 import torch import torch.nn as nn import torch.nn.functional as F import torchvision from modelsummary import summary from feelvos.models.Backbone import UNet from feelvos.models.Embeddings import PixelwiseEmbedding from feelvos.models.DynamicSegmentationHead import DynamicSegmentationHead from feelvos.models.Matching import global_matching, local_matching class FEELVOS(nn.Module): def __init__(self, c_in, n_classes, use_gt=True, pretrained=None): super(FEELVOS, self).__init__() self.n_classes = n_classes self.use_gt = use_gt self.backbone = None if pretrained is not None and self.backbone is None: self.backbone = UNet(c_in, n_classes) self.backbone.load_state_dict(torch.load(pretrained)) self.backbone.eval() self.embedding = PixelwiseEmbedding(n_classes, n_classes, 100) self.dsh = DynamicSegmentationHead(n_classes+1+1+1, 1) def forward(self, x_list): x1 = x_list[0] x2 = x_list[1] x3 = x_list[2] if self.use_gt == False: with torch.no_grad(): x1 = self.backbone(x1) x2 = self.backbone(x2) with torch.no_grad(): x3 = self.backbone(x3) x1_l = []; x1_e = [] x2_l = []; x2_e = [] x3_l = []; x3_e = [] gm = []; lm = [] logits = [] x1 = F.interpolate(x1, 32) x2 = F.interpolate(x2, 32) x3 = F.interpolate(x3, 32) for i in range(self.n_classes): x1_l.append(x1[:, i, :, :].unsqueeze(1)) x1_e.append(self.embedding(x1_l[i])) x2_l.append(x2[:, i, :, :].unsqueeze(1)) x2_e.append(self.embedding(x2_l[i])) x3_l.append(x3[:, i, :, :].unsqueeze(1)) x3_e.append(self.embedding(x3_l[i])) with torch.no_grad(): gm.append(global_matching(x1_e[i], x3_e[i])) lm.append(global_matching(x2_e[i], x3_e[i])) x_t = torch.cat((x3, gm[i].cuda(), lm[i].cuda(), x2_l[i]), dim=1) logits.append(self.dsh(x_t)) x = None for i in range(self.n_classes): if i == 0: x = logits[i] else: x = torch.cat((logits[i-1], logits[i]), dim=1) return x if __name__ == "__main__": device = torch.device("cuda:0") model = FEELVOS(3, 1, use_gt=False).cuda(device=device) # summary(model, torch.zeros((1, 3, 512, 512)).cuda(), show_input=True) # summary(model, torch.zeros((1, 3, 512, 512)).cuda(), show_input=False) x1 = cv2.imread('example/x2.png') x2 = cv2.imread('example/x3.png') x1 = cv2.resize(x1, dsize=(256, 256)) x1 = torchvision.transforms.ToTensor()(x1) x1 = x1.unsqueeze(0).to(device=device) x2 = cv2.resize(x2, dsize=(256, 256)) x2 = torchvision.transforms.ToTensor()(x2) x2 = x2.unsqueeze(0).to(device=device) x = torch.cat((x1, x2), dim=0) y = model(x, x, x) print(y) --- FILE SEPARATOR --- from cv2 import cv2 import torch import torch.nn as nn import torchvision from torch.autograd.variable import Variable from .correlation_package.correlation import Correlation def distance(p, q): ps = torch.sum(p * p) qs = torch.sum(q * q) norm = torch.norm(ps-qs, p=2, dim=-1) res = 1 - (2 / (1 + torch.exp(norm))) return res def global_matching(x, y): output = torch.zeros(x.size(0), 1, x.size(2), x.size(3)) for i in range(x.size(0)): for j in range(x.size(2)): for k in range(x.size(3)): output[i, :, j, k] = distance(x[i, :, j, k], y[i, :, j, k]) return output def local_matching(x, y, window): output = torch.zeros(x.size(0), 1, x.size(2), x.size(3)) # out_corr = Correlation(pad_size=6, kernel_size=window, max_displacement=0, stride1=1, stride2=1, corr_multiply=1)(x, y) return output --- FILE SEPARATOR --- import random import torch import torch.nn as nn import torchvision from torch.utils.data import DataLoader import torchvision.transforms as transforms from feelvos.models.Backbone import UNet from feelvos.dataset import FEELVOSTriple from feelvos.transform import preprocessing device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) if __name__ == "__main__": target_folder = './data/' ds_test = FEELVOSTriple(root='./data/', split='test', transform=preprocessing) loc = './unet/weight010' model = UNet(3, 1) model.load_state_dict(torch.load(loc+'.pt')) model = model.to(device) model.eval() pick = [] for i in range(1): pick.append(random.randrange(0, 500, 1)) for i in pick: X, y = ds_test.__getitem__(i) torchvision.utils.save_image(X[0], './testimage/'+str(i)+'_X'+'.png') torchvision.utils.save_image(y[0], './testimage/'+str(i)+'_y'+'.png') X = X[0].view(1, 3, 256, 256).cuda() y_pred = model(X) torchvision.utils.save_image(y_pred, './testimage/'+loc.split('/')[-1]+'_'+str(i)+'_ypred'+'.png') --- FILE SEPARATOR --- import argparse from feelvos.dataset import FEELVOSTriple from feelvos.transform import preprocessing from feelvos.models.FEELVOS import FEELVOS from feelvos.loss import dice_loss from feelvos.metric import dice_coeff from feelvos.trainer import Trainer import torch import torch.nn as nn from torch.utils.data import DataLoader from tensorboardX import SummaryWriter parser = argparse.ArgumentParser() parser.add_argument( '--batch_size', type=int, default=7 ) parser.add_argument( '--epoch', type=int, default=40 ) parser.add_argument( '--lr', type=float, default=0.001 ) parser.add_argument( '--dataset', type=str, default='./data/' ) parser.add_argument( '--workers', type=int, default=4 ) cfg = parser.parse_args() print(cfg) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print(device) if __name__ == "__main__": ds_train = FEELVOSTriple(root='./data/', split='train', transform=preprocessing) ds_test = FEELVOSTriple(root='./data/', split='test', transform=preprocessing) dl_train = DataLoader(ds_train, batch_size=cfg.batch_size, shuffle=True, num_workers=cfg.workers) dl_test = DataLoader(ds_test, batch_size=cfg.batch_size, shuffle=False, num_workers=cfg.workers) print("DATA LOADED") model = FEELVOS(3, 1, use_gt=True, pretrained='./unet/weight010.pt') optimizer = torch.optim.Adam(model.parameters(), lr=cfg.lr) criterion = nn.BCELoss() success_metric = nn.BCELoss() summary = SummaryWriter() trainer = Trainer(model, criterion, optimizer, success_metric, device, None, False) fit = trainer.fit(dl_train, dl_test, num_epochs=cfg.epoch, checkpoints='./save2/'+model.__class__.__name__+'.pt') torch.save(model.state_dict(), './save/final_state_dict.pt') torch.save(model, './save/final.pt') loss_fn_name = "cross entropy" best_score = str(fit.best_score) print(f"Best loss score(loss function = {loss_fn_name}): {best_score}") --- FILE SEPARATOR --- from cv2 import cv2 import torchvision.transforms as transforms def preprocessing(images, masks): fin_images = [] fin_masks = [] image_transform = transforms.Compose( [ transforms.ToTensor(), ] ) for i in range(len(images)): tmp_i = cv2.resize(images[i], dsize=(256, 256), interpolation=cv2.INTER_AREA) tmp_m = cv2.resize(masks[i], dsize=(256, 256), interpolation=cv2.INTER_AREA) tmp_m = cv2.cvtColor(tmp_m, cv2.COLOR_BGR2GRAY) for x in range(tmp_m.shape[0]): for y in range(tmp_m.shape[1]): if tmp_m[y, x] == 29: tmp_m[y, x] = 255 fin_images.append(image_transform(tmp_i).float()) fin_masks.append(image_transform(tmp_m).float()) return fin_images, fin_masks --- FILE SEPARATOR --- import torch def list_to_tensor(t_list, x, y, device): for i in range(x): for j in range(y): t_list[i][j] = torch.from_numpy(t_list[i][j]).to(device=device) return t_list --- FILE SEPARATOR --- from setuptools import setup, find_packages setup( name = 'feelvos', version = '0.5', description = 'FEELVOS implementation in PyTorch; FEELVOS: Fast End-to-End Embedding Learning for Video Object Segmentation', author = 'Younghan Kim', author_email = '[email protected]', install_requires= [], packages = find_packages(), python_requires = '>=3.6' )
[ "/feelvos/dataset.py", "/feelvos/models/DynamicSegmentationHead.py", "/feelvos/models/Embeddings.py", "/feelvos/models/FEELVOS.py", "/feelvos/models/Matching.py", "/feelvos/test.py", "/feelvos/train.py", "/feelvos/transform.py", "/feelvos/util/toTensor.py", "/setup.py" ]
0-gpa-gang/NumRoll
import sqlite3 def create(): conn = sqlite3.connect('image.db') c = conn.cursor() c.execute("""DROP TABLE image""") c.execute("""CREATE TABLE image ( path TEXT PRIMARY KEY, classifier INTEGER DEFAULT "N/A" )""") c.execute("""INSERT INTO image (path) VALUES ('image/0.jpeg'), ('image/1.jpeg'), ('image/2.jpeg'), ('image/3.jpeg'), ('image/4.jpeg');""") conn.commit() if __name__ == "__main__": create() --- FILE SEPARATOR --- class Image: def __init__(self, path, classifier): self.path = path self.classifier = classifier --- FILE SEPARATOR --- import sys from PyQt5 import QtCore, QtGui, uic, QtWidgets from PyQt5.QtWidgets import QApplication from PyQt5.QtWidgets import QLabel from PyQt5.QtWidgets import QWidget from PyQt5.QtWidgets import QPushButton,QAction, QShortcut from PyQt5.QtGui import QIcon, QKeySequence from PyQt5.QtCore import Qt,pyqtSlot class Canvas(QtWidgets.QMainWindow): def __init__(self, index): super().__init__() self.label = QtWidgets.QLabel() self.whiteboard = QtGui.QPixmap(280,280) #self.setStyleSheet("background-color: black;") self.label.setPixmap(self.whiteboard) self.setCentralWidget(self.label) self.index = index #self.count = 0 self.last_x, self.last_y = None, None def mouseMoveEvent(self, e): if self.last_x is None: self.last_x = e.x() self.last_y = e.y() return cursor = QtGui.QPainter(self.label.pixmap()) p = QtGui.QPen() p.setWidth(12) p.setColor(QtGui.QColor('#FFFFFF')) cursor.setPen(p) cursor.drawLine(self.last_x, self.last_y, e.x(), e.y()) cursor.end() self.update() # update the origin for the next event self.last_x = e.x() self.last_y = e.y() def mouseReleaseEvent(self, e): self.last_x = None self.last_y = None def save(self): p = QWidget.grab(self) p_resized = p.scaled(28,28,QtCore.Qt.KeepAspectRatio, transformMode=QtCore.Qt.SmoothTransformation) fileName = "image/"+ str(self.index) +".jpeg" p_resized.save(fileName, 'JPEG') print("image saved!") self.close() def save_all(lst_wind): for i in lst_wind: i.save() def canvases(): app = QtWidgets.QApplication(sys.argv) windows = [] shortcuts = [] for i in range(5): windows.append(Canvas(i)) windows[i].setWindowFlags(QtCore.Qt.FramelessWindowHint) windows[i].move(340+i*300,400) shortcuts.append(QShortcut(QKeySequence('Ctrl+S'), windows[i])) shortcuts[i].activated.connect(lambda: save_all(windows)) for i in range(5): windows[i].show() app.exec_() if __name__ == "__main__": canvases() --- FILE SEPARATOR --- import numpy as np import tensorflow as tf from PIL import Image from io_file import * from tensorflow import keras from tensorflow.keras.models import load_model from Database import * gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) except RuntimeError as e: print(e) class Classify: def __init__(self): self.model = load_model("NumRoll.h5") def classify(self, np_arr): prediction = self.model.predict(np.array([np_arr])) return np.argmax(prediction) def classify_all(self, lst): num_list = [] for i in lst: num_list.append(int(self.classify(i))) return num_list class DataSet: def __init__(self): self.position = read_from_db() # a list of string locations self.num_array = [] #a list of numpy arrays def get_num_array(self): return self.num_array def image_to_array(self): total_arrays = [] for i in self.position: image = Image.open(i) data = np.array(image).astype('float32')/255.0 data = np.sum(data, axis=-1)/data.shape[-1] total_arrays.append(data) self.num_array = total_arrays def classify_and_save(): create() data = DataSet() data.image_to_array() print(data.num_array) classifier = Classify() final = classifier.classify_all(data.num_array) print(final) output_to_db(final) if __name__ == "__main__": classify_and_save() --- FILE SEPARATOR --- import sys import os from PyQt5.QtWidgets import QApplication from PyQt5.QtWidgets import QLabel from PyQt5.QtWidgets import QWidget from PyQt5.QtWidgets import QPushButton from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSlot, Qt from PyQt5 import uic app = QApplication(sys.argv) failWindow = QWidget() failWindow.setWindowTitle("Error!") failWindow.setGeometry(150,150,800,300) failWindow.move(560,560) failmsg = QLabel('<h2>WRONG CODE! DENIED ACCESS</h2>', parent = failWindow) failmsg.move(60,60) failWindow.show() sys.exit(app.exec_()) --- FILE SEPARATOR --- import sqlite3 import os # import the following lines to the main py file # conn = sqlite3.connect("image.db") # c = conn.cursor() def read_from_db(): conn = sqlite3.connect("image.db") c = conn.cursor() c.execute("SELECT * FROM image") total = [] for row in c.fetchall(): total.append(row[0]) return total def output_to_db(classify): conn = sqlite3.connect("image.db") c = conn.cursor() total = read_from_db() for i in range(len(classify)): num = classify[i] location = total[i] c.execute("UPDATE image SET classifier = (?) WHERE path = (?)", (num, location)) conn.commit() # if want to see the classified result in a printed list, turn docstring into code """ classified = [] c.execute("SELECT * FROM image") for row in c.fetchall(): classified.append(row[1]) print(classified) """ def special_case(): conn = sqlite3.connect("image.db") c = conn.cursor() c.execute("SELECT * FROM image") special = "" for row in c.fetchall(): special += str(row[1]) if special == "42069": os.system("vlc RickRoll.mp4") # change with system --- FILE SEPARATOR --- import sys import os from PyQt5.QtWidgets import QApplication from PyQt5.QtWidgets import QLabel from PyQt5.QtWidgets import QWidget from PyQt5.QtWidgets import QPushButton from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSlot, Qt from PyQt5 import uic import numpy as np from classifier import * from canvas import * import sqlite3 def window(): # create instance of QApplication # sys.argv contains command link arguments app = QApplication(sys.argv) #create the GUI widget = QWidget() widget.setWindowTitle("NumRoll") # (x,y,width, height) widget.setGeometry(150,150,1500,700) widget.move(1170, 330) welcomemsg = QLabel('<h1>Your Homework is Locked!</h1>', parent=widget) welcomemsg.move(350,60) instruction = QLabel('<h3>Toggle your mouse to write down your 5-bit passcode</h3>', parent = widget) instruction.move(250,120) instruction2 = QLabel('<h3>When you are done, Press "Ctrl+S" to proceed.</h3>', parent = widget) instruction2.move(340,600) # make the buttons start = QPushButton(widget) start.setStyleSheet("background-color:red") start.setText("Click here to start.") start.move(600,180) start.clicked.connect(start_pushed) # show the window widget.show() # execute the program sys.exit(app.exec_()) def start_pushed(): os.system("python3 canvas.py") classify_and_save() compare('12345') def compare(passcode): conn = sqlite3.connect("image.db") c = conn.cursor() c.execute("""SELECT classifier FROM image""") #print(str(c.fetchall())) code = [] for i in c.fetchall(): code.append(str(i[0])) a = "".join(code) print("You have entered: "+a) if a == passcode: os.system("vim homework.txt") sys.exit() elif a == "42069": os.system("vlc env/RickRoll.mp4") else: print("Wrong code") os.system("python3 error.py") if __name__ == "__main__": window() --- FILE SEPARATOR --- import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.layers import Dense, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization from tensorflow.keras.regularizers import l1, l2 from tensorflow.keras.datasets import mnist from tensorflow.keras.optimizers import Adam, SGD from tensorflow.keras.utils import to_categorical from PIL import Image from tensorflow.keras.mixed_precision import experimental as mixed_precision gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) except RuntimeError as e: print(e) policy = mixed_precision.Policy('mixed_float16') mixed_precision.set_policy(policy) class MLModel: def __init__(self): self.inputs = keras.Input(shape=(28, 28, 1)) self.x = self.conv_module(self.inputs, f=32, ks=(5, 5), s=(1, 1), p="same", a="relu", kr=l2(0.001), br=l2(0.001), do=0.4, mp=True) self.x = BatchNormalization(-1)(self.x) #self.x = self.conv_module(self.inputs, f=16, ks=(3, 3), s=(1, 1), p="same", a="relu", kr=l2(0.001), br=l2(0.001), do=0.4, mp=True) #self.x = BatchNormalization(-1)(self.x) #self.x = self.conv_module(self.inputs, f=32, ks=(3, 3), s=(1, 1), p="same", a="relu", kr=l2(0.001), br=l2(0.001), do=0.4, mp=True) #self.x = BatchNormalization(-1)(self.x) self.x = self.flatten_module(self.x) self.x = BatchNormalization(-1)(self.x) self.x = self.dense_module(self.x, u=50, a="relu", kr=l2(0.001), br=l2(0.001)) self.x = BatchNormalization(-1)(self.x) self.x = self.dense_module(self.x, u=10, a="softmax", kr=l2(0.001), br=l2(0.001)) self.outputs = self.x def conv_module(self, x, f, ks, s, p, a, kr, br, do=None, mp=False): x = Conv2D(filters=f, kernel_size=ks, strides=s, padding=p, activation=a, kernel_regularizer=kr, bias_regularizer=br)(x) if mp: x = MaxPooling2D(pool_size=(2, 2))(x) if do != None: x = Dropout(do)(x) return x def flatten_module(self, x): x = Flatten()(x) x = Dense(100, activation="relu", kernel_regularizer=l2(0.001), bias_regularizer=l2(0.001))(x) x = Dropout(0.5)(x) return x def dense_module(self, x, u, a, kr, br, do=None): x = Dense(units=u, activation=a, kernel_regularizer=kr, bias_regularizer=br)(x) return x def define_model(self): self.model = keras.Model(inputs=self.inputs, outputs=self.outputs, name="mnist_model") def compile_model(self, optimizer, loss, metrics): self.model.compile(optimizer=optimizer, loss=loss, metrics=metrics) def train(): mlmodel = MLModel() mlmodel.define_model() mlmodel.compile_model(optimizer=SGD(lr=0.0007, momentum=0.9), loss="categorical_crossentropy", metrics=['accuracy']) (trainX, trainY), (testX, testY) = mnist.load_data() trainX = trainX.reshape((trainX.shape[0], 28, 28, 1)).astype("float32") testX = testX.reshape((testX.shape[0], 28, 28, 1)).astype("float32") trainX /= 255 testX /= 255 trainY = to_categorical(trainY) testY = to_categorical(testY) mlmodel.model.fit(x=trainX, y=trainY, batch_size=None, epochs=60, verbose=1, validation_data=(testX, testY), use_multiprocessing=True) mlmodel.model.save("NumRoll.h5") if __name__ == "__main__": train()
[ "/Database.py", "/Images.py", "/canvas.py", "/classifier.py", "/error.py", "/io_file.py", "/main.py", "/training.py" ]
0-jam/azfunc
import logging import azure.functions as func from .monkey_generator import generate_text def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python monkey text generator.') gen_size = req.params.get('gen_size') if not gen_size: try: req_body = req.get_json() except ValueError: pass else: gen_size = req_body.get('gen_size') if gen_size: return func.HttpResponse(generate_text(int(gen_size))) else: return func.HttpResponse( "Please pass a gen_size on the query string or in the request body", status_code=400 ) --- FILE SEPARATOR --- import random # All characters on the keyboard as integers CHARS = list(range(32, 128)) + [8, 9, 10] def shuffle(orig_list): return random.sample(orig_list, k=len(orig_list)) def generate_text(gen_size=100): generated_text = '' for _ in range(gen_size): generated_text += chr(shuffle(CHARS)[0]) return generated_text --- FILE SEPARATOR --- import logging import azure.functions as func from .sql_controller import get_places def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python HTTP trigger function processed a request.') return func.HttpResponse(format(get_places()), mimetype='application/json') --- FILE SEPARATOR --- import json import os import pyodbc ENV = os.environ DB_ENDPOINT = ENV.get('SQL_DB_ENDPOINT') DB_NAME = ENV.get('SQL_DB_NAME') DB_USERNAME = ENV.get('SQL_DB_USERNAME') DB_PASSWORD = ENV.get('SQL_DB_PASSWORD') SQL_DRIVER = '{ODBC Driver 17 for SQL Server}' def establish_connection() -> pyodbc.Connection: return pyodbc.connect('DRIVER=' + SQL_DRIVER + ';SERVER=' + DB_ENDPOINT + ';PORT=1433;DATABASE=' + DB_NAME + ';UID=' + DB_USERNAME + ';PWD=' + DB_PASSWORD) def exec_sql(query: str) -> list: with establish_connection() as connection: with connection.cursor() as cursor: cursor.execute(query) column_names = [desc[0] for desc in cursor.description] try: rows = cursor.fetchall() return [dict(zip(column_names, row)) for row in rows] except pyodbc.ProgrammingError: return [{'message': 'affected {} rows'.format(cursor.rowcount)}] finally: connection.commit() def get_places(): rows = exec_sql('select * from dbo.places') # decimal 型の latitude, longitude を float 型にシリアライズしている return json.dumps(rows, ensure_ascii=False, default=float) --- FILE SEPARATOR --- import os import pyodbc import json ENV = os.environ DB_ENDPOINT = ENV.get('SQL_DB_ENDPOINT') DB_NAME = ENV.get('SQL_DB_NAME') DB_USERNAME = ENV.get('SQL_DB_USERNAME') DB_PASSWORD = ENV.get('SQL_DB_PASSWORD') SQL_DRIVER = '{ODBC Driver 17 for SQL Server}' def establish_connection(): return pyodbc.connect('DRIVER=' + SQL_DRIVER + ';SERVER=' + DB_ENDPOINT + ';PORT=1433;DATABASE=' + DB_NAME + ';UID=' + DB_USERNAME + ';PWD=' + DB_PASSWORD) def rows2json(rows): return json.dumps([tuple(row) for row in rows], ensure_ascii=False) def exec_sql(): connection = establish_connection() cursor = connection.cursor() cursor.execute("SELECT TOP 20 pc.Name as CategoryName, p.name as ProductName FROM [SalesLT].[ProductCategory] pc JOIN [SalesLT].[Product] p ON pc.productcategoryid = p.productcategoryid") try: rows = cursor.fetchall() result_json = rows2json(rows) except pyodbc.ProgrammingError: rows = cursor.rowcount result_json = json.dumps("affected {} rows".format(cursor.rowcount)) cursor.close() connection.close() return result_json
[ "/azmonkeygen/__init__.py", "/azmonkeygen/monkey_generator.py", "/get-places/__init__.py", "/get-places/sql_controller.py", "/sqlcontroller/sql_controller.py" ]
0-jam/utanet_scraper
import argparse import json from pathlib import Path def main(): parser = argparse.ArgumentParser(description='utanet_scraper.pyで抽出した曲情報から特定の項目を抽出') parser.add_argument('input', type=str, help='入力ディレクトリ名') parser.add_argument('output', type=str, help='出力ファイル名') parser.add_argument('-a', '--attribute', type=str, default='lyric', choices=['title', 'artist', 'lyricist', 'composer', 'lyric'], help="抽出したい項目(デフォルト:'lyric')") parser.add_argument('--allow_dups', action='store_true', help='項目の重複を許容(デフォルト:false)') args = parser.parse_args() extracted_values = [] for json_path in Path(args.input).iterdir(): with json_path.open() as json_file: json_dict = json.load(json_file) extracted_values.extend([value[args.attribute] for value in json_dict.values()]) if not args.allow_dups: extracted_values = set(extracted_values) with Path(args.output).open('w', encoding='utf-8') as out: out.write('\n'.join(extracted_values)) if __name__ == "__main__": main() --- FILE SEPARATOR --- import time import urllib from beautifulscraper import BeautifulScraper from tqdm import tqdm scraper = BeautifulScraper() domain = 'https://www.uta-net.com' attributes = { # 歌手名 'artist': '1', # 曲名 'title': '2', # 作詞者名 'lyricist': '3', # 作曲者名 'composer': '8', } match_modes = { # 完全一致 'exact': '4', # 部分一致 'partial': '3', } def get_page(url): time.sleep(1.0) body = scraper.go(url) return body def search_song_ids(query, attribute='lyricist', match_mode='exact'): # クエリが日本語だと正しく処理されないのでエンコード search_url = domain + '/search/?Aselect=' + attributes[attribute] + '&Keyword=' + urllib.parse.quote(query) + '&Bselect=' + match_modes[match_mode] + '&sort=' print('曲リストを取得しています:', search_url) bodies = [get_page(search_url)] pages = bodies[0].select('#page_list')[0].find_all('a') if len(pages) > 0: page_urls = [urllib.parse.urlparse(page.get('href')) for page in pages] queries = [urllib.parse.parse_qs(page.query) for page in page_urls] last_page = page_urls[-1] last_page_num = max([int(query['pnum'][0]) for query in queries]) lpq = queries[-1] print(last_page_num, 'ページ見つかりました') for pnum in tqdm(range(2, last_page_num + 1)): # ページ番号だけ変えて新しくURLを生成 lpq['pnum'] = [str(pnum)] page = urllib.parse.ParseResult( last_page.scheme, last_page.netloc, last_page.path, last_page.params, urllib.parse.urlencode(lpq, True), '' ) page_url = urllib.parse.urlunparse(page) bodies.append(get_page(page_url)) else: print('1ページ見つかりました') song_ids = [] for body in bodies: # 歌詞ページのURLを抽出 for td in body.select('.td1'): song_ids.append(td.find_all('a')[0].get('href')) return song_ids def extract_song(song_id): song_url = domain + song_id print('曲データを抽出しています:', song_url) body = get_page(song_url) title = body.select('.song-infoboard h2')[0].text # 歌詞内の改行を半角スラッシュ/に置換して抽出 lyric = body.find(id='kashi_area').get_text('/') artist = body.select('[itemprop="recordedAs"]')[0].text.strip() lyricist = body.select('[itemprop="lyricist"]')[0].text composer = body.select('[itemprop="composer"]')[0].text return { song_id: { 'title': title, 'lyric': lyric, 'artist': artist, 'lyricist': lyricist, 'composer': composer, } } --- FILE SEPARATOR --- import argparse import json import sqlite3 from pathlib import Path def main(): parser = argparse.ArgumentParser(description='utanet_scraper.py で抽出した JSON ファイルを SQLite DB に変換') parser.add_argument('json_dir', type=str, help='JSON ファイルのあるディレクトリ') parser.add_argument('sqlite_file', type=str, help='SQLite ファイル') args = parser.parse_args() sqlite_file = Path(args.sqlite_file) sqlite_connection = sqlite3.connect(sqlite_file) sqlite_cursor = sqlite_connection.cursor() sqlite_cursor.execute(''' create table if not exists utanet_songs( song_id int primary key, title text, lyric text, artist text, lyricist text, composer text ) ''') query_string = ''' insert into utanet_songs(song_id, title, lyric, artist, lyricist, composer) values (?, ?, ?, ?, ?, ?) ''' for json_path in Path(args.json_dir).iterdir(): with json_path.open() as json_file: song_dict = json.load(json_file) print('処理中:', json_path.name) song_id = int(json_path.stem) song_data = tuple(song_dict.values())[0] query_values = ( song_id, song_data['title'], song_data['lyric'], song_data['artist'], song_data['lyricist'], song_data['composer'], ) sqlite_cursor.execute(query_string, query_values) sqlite_connection.commit() sqlite_connection.close() print('完了') if __name__ == "__main__": main() --- FILE SEPARATOR --- import argparse import json import urllib from pathlib import Path from modules.utanet import extract_song def main(): parser = argparse.ArgumentParser(description='曲情報を抽出(Ctrl + C で中止)') parser.add_argument('-o', '--output_dir', type=str, default='songs', help="出力ディレクトリ名(デフォルト:'./songs')") parser.add_argument('-s', '--starts_with', type=int, default=1, help="指定した ID から抽出を開始(デフォルト:'1')") args = parser.parse_args() output_dir = Path(args.output_dir) Path.mkdir(output_dir, parents=True, exist_ok=True) song_count = args.starts_with while True: try: song_json_path = output_dir.joinpath('{}.json'.format(song_count)) if song_json_path.is_file(): print('スキップ:ファイル "{}" は既に存在します'.format(song_json_path)) continue song_dict = extract_song('/song/{}/'.format(song_count)) with song_json_path.open('w', encoding='utf-8') as song_json: song_json.write(json.dumps(song_dict, ensure_ascii=False, indent=2)) except urllib.error.HTTPError: print('ID: {} が見つかりません'.format(song_count)) continue finally: song_count += 1 if __name__ == '__main__': main()
[ "/json_extractor.py", "/modules/utanet.py", "/sqlite_converter.py", "/utanet_scraper.py" ]
0-k-1/Practice_turorail
from django.urls import path import books from books.views import PublisherList urlpatterns = [ path('publishers/',PublisherList.as_view()) ] --- FILE SEPARATOR --- from django.shortcuts import render # Create your views here. from django.views.generic import ListView from books.models import Publisher class PublisherList(ListView): model = Publisher
[ "/books/urls.py", "/books/views.py" ]
0-k-1/TodoMVC2
from django.db import models #from django.contrib.auth.models import User class Todo(models.Model): title = models.CharField(max_length=50) completed = models.BooleanField(default=False) --- FILE SEPARATOR --- # from django.urls import path from django.conf.urls import url from App.views import todoMVC_view,save_view urlpatterns = [ url('', todoMVC_view), url(r'^save/', save_view, name='save') ] --- FILE SEPARATOR --- from django.shortcuts import render,redirect from App.models import Todo import json # from django.forms.models import model_to_dict def todoMVC_view(request): # list=[{"content":"任务1","completed":"True"},{"content":"任务2","completed":"False"}] # list=[ # {"completed": "false","id": "1","title": "31"}, # {"completed": "true","id": "2","title": "35"}, # {"completed": "true","id": "0","title": "32"} # ] # list_value = list.values() # list = model_to_dict(list[0]) # print(list_value) ls = Todo.objects.all() ls = list(ls.values()) print(ls) return render(request, 'VueExample.html', {"list":json.dumps(ls)}) #return render(request, 'VueExample.html', {"list":list}) def save_view(request): print(request.POST['q']) # print(request.body) # print(type(request.body)) # print(request.body.decode()) # para = json.loads(request.body.decode()) # print(para) # 直接覆盖 ls = Todo.objects.all() ls.delete() for item in json.loads(request.POST['q']): Todo.objects.create(title=item['title'], completed=item['completed']) # 删除不起作用 # try: # for k in item.keys(): # print(k,item[k]) # Todo.objects.update_or_create(id=item['id'], # defaults={'id': item['id'], 'title': item['title'], # 'completed': item['completed']}) # except: # pass #return render(request, 'VueExample.html') return redirect('/')
[ "/App/models.py", "/App/urls.py", "/App/views.py" ]
0-u-0/webrtc-ios-script
#!/usr/bin/env python import logging import os import subprocess import sys def IsRealDepotTools(path): expanded_path = os.path.expanduser(path) return os.path.isfile(os.path.join(expanded_path, 'gclient.py')) def add_depot_tools_to_path(source_dir=''): """Search for depot_tools and add it to sys.path.""" # First, check if we have a DEPS'd in "depot_tools". deps_depot_tools = os.path.join(source_dir, 'third_party', 'depot_tools') if IsRealDepotTools(deps_depot_tools): # Put the pinned version at the start of the sys.path, in case there # are other non-pinned versions already on the sys.path. sys.path.insert(0, deps_depot_tools) return deps_depot_tools # Then look if depot_tools is already in PYTHONPATH. for i in sys.path: if i.rstrip(os.sep).endswith('depot_tools') and IsRealDepotTools(i): return i # Then look if depot_tools is in PATH, common case. for i in os.environ['PATH'].split(os.pathsep): if IsRealDepotTools(i): sys.path.append(i.rstrip(os.sep)) return i # Rare case, it's not even in PATH, look upward up to root. root_dir = os.path.dirname(os.path.abspath(__file__)) previous_dir = os.path.abspath(__file__) while root_dir and root_dir != previous_dir: i = os.path.join(root_dir, 'depot_tools') if IsRealDepotTools(i): sys.path.append(i) return i previous_dir = root_dir root_dir = os.path.dirname(root_dir) logging.error('Failed to find depot_tools') return None def _RunCommand(cmd): logging.debug('Running: %r', cmd) subprocess.check_call(cmd) def _RunGN(args): logging.info('Gn args : %s', args) cmd = [sys.executable, os.path.join(add_depot_tools_to_path(), 'gn.py')] cmd.extend(args) _RunCommand(cmd) def _RunNinja(output_directory, args): logging.info('Ninja args : %s', args) cmd = [os.path.join(add_depot_tools_to_path(), 'ninja'), '-C', output_directory] cmd.extend(args) _RunCommand(cmd) def _EncodeForGN(value): """Encodes value as a GN literal.""" if isinstance(value, str): return '"' + value + '"' elif isinstance(value, bool): return repr(value).lower() else: return repr(value) def Build(output_directory, gn_args, ninja_target_args): """Generates target architecture using GN and builds it using ninja.""" gn_args_str = '--args=' + ' '.join([k + '=' + _EncodeForGN(v) for k, v in gn_args.items()]) gn_args_list = ['gen', output_directory, gn_args_str] _RunGN(gn_args_list) _RunNinja(output_directory, ninja_target_args) --- FILE SEPARATOR --- #!/usr/bin/env python import os import argparse import logging import sys from distutils import dir_util from build_tools import Build, _RunCommand # disable x86-64 when you intend to distribute app through the app store # https://webrtc.github.io/webrtc-org/native-code/ios/ # DEFAULT_ARCHS = ['arm64', 'arm', 'x64', 'x86'] DEFAULT_ARCHS = ['arm64', 'arm', 'x64'] TARGETS = ['sdk:framework_objc'] OUT_DIR = 'out' SDK_FRAMEWORK_NAME = 'WebRTC.framework' def parse_args(): parser = argparse.ArgumentParser(description='Collect and build WebRTC iOS framework.') parser.add_argument('-s', '--source-dir', help='WebRTC source dir. Example: /realpath/to/src') parser.add_argument('-v', '--verbose', action='store_true', help='Debug logging.') parser.add_argument('-r', '--is-release', action='store_true', help='Release or not.') parser.add_argument('--use-bitcode', action='store_true', help='Use bitcode or not.') parser.add_argument('--enable-vp9', action='store_true', help='Enable VP9 SoftCodec or not.') return parser.parse_args() def get_debug_dir(is_debug): if is_debug: return 'Debug' else: return 'Release' def build_ios_framework(src_dir, is_debug, bitcode): gn_args = { 'target_os': 'ios', 'ios_enable_code_signing': False, 'use_xcode_clang': True, 'is_debug': is_debug, 'ios_deployment_target': '10.0', 'enable_stripping': True, 'enable_dsyms': not bitcode, 'enable_ios_bitcode': bitcode } ninja_target_args = TARGETS for arch in DEFAULT_ARCHS: gn_args['target_cpu'] = arch build_dir = os.path.join(src_dir, OUT_DIR, get_debug_dir(is_debug), arch) logging.info('Build dir : %s', build_dir) Build(build_dir, gn_args, ninja_target_args) def create_fat_library(src_dir, is_debug): output_dir = os.path.join(src_dir, OUT_DIR, get_debug_dir(is_debug)) lib_paths = [os.path.join(output_dir, arch) for arch in DEFAULT_ARCHS] # Combine the slices. dylib_path = os.path.join(SDK_FRAMEWORK_NAME, 'WebRTC') # Dylibs will be combined, all other files are the same across archs. # Use distutils instead of shutil to support merging folders. dir_util.copy_tree( os.path.join(lib_paths[0], SDK_FRAMEWORK_NAME), os.path.join(output_dir, SDK_FRAMEWORK_NAME)) logging.info('Merging framework slices.') dylib_paths = [os.path.join(path, dylib_path) for path in lib_paths] out_dylib_path = os.path.join(output_dir, dylib_path) try: os.remove(out_dylib_path) except OSError: pass cmd = ['lipo'] + dylib_paths + ['-create', '-output', out_dylib_path] _RunCommand(cmd) # Merge the dSYM slices. lib_dsym_dir_path = os.path.join(lib_paths[0], 'WebRTC.dSYM') if os.path.isdir(lib_dsym_dir_path): dir_util.copy_tree(lib_dsym_dir_path, os.path.join(output_dir, 'WebRTC.dSYM')) logging.info('Merging dSYM slices.') dsym_path = os.path.join('WebRTC.dSYM', 'Contents', 'Resources', 'DWARF', 'WebRTC') lib_dsym_paths = [os.path.join(path, dsym_path) for path in lib_paths] out_dsym_path = os.path.join(output_dir, dsym_path) try: os.remove(out_dsym_path) except OSError: pass cmd = ['lipo'] + lib_dsym_paths + ['-create', '-output', out_dsym_path] _RunCommand(cmd) logging.info('Done.') def main(): args = parse_args() logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) if not args.source_dir: src_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) else: src_dir = args.source_dir if os.path.isdir(src_dir): is_debug = not args.is_release build_ios_framework(src_dir, is_debug, args.use_bitcode) create_fat_library(src_dir, is_debug) else: logging.error('Src path not exists : %s', src_dir) if __name__ == '__main__': sys.exit(main())
[ "/build_tools.py", "/main.py" ]
0/pathintmatmult
#!/usr/bin/env python3 """ Harmonic oscillator PIFT example. An oscillator with an angular frequency of x kelvin at reciprocal temperature beta reciprocal kelvin has a thermal potential energy (in kelvin) of (1/4) x coth(0.5 beta x) and a total energy of twice that. For example, for an oscillator with an angular frequency of 1 K, at 0.1 K the thermal averages are approximately 0.2500 K and 0.5000 K (very nearly the zero point energies), while at 10 K they are approximately 5.0042 K and 10.008 K. By 100 K, the total energy is about 100.00 K, so we are effectively at the classical limit. """ from argparse import ArgumentParser from pathintmatmult import PIFTMM from pathintmatmult.constants import HBAR, KB, ME from pathintmatmult.potentials import harmonic_potential # Parse arguments. p = ArgumentParser(description='Calculate HO thermal properties using PIFTMM.') p_config = p.add_argument_group('configuration') p_config.add_argument('--mass', metavar='M', type=float, required=True, help='particle mass (electron masses)') p_config.add_argument('--omega', metavar='W', type=float, required=True, help='angular frequency (K)') p_config.add_argument('--grid-range', metavar='R', type=float, required=True, help='grid range from origin (nm)') p_config.add_argument('--grid-len', metavar='L', type=int, required=True, help='number of points on grid') p_config.add_argument('--beta', metavar='B', type=float, required=True, help='reciprocal temperature (1/K)') p_config.add_argument('--num-links', metavar='P', type=int, required=True, help='number of links') p.add_argument('--density-out', metavar='FILE', help='path to output density plot') args = p.parse_args() mass = args.mass * ME # g/mol omega = args.omega * KB / HBAR # 1/ps grid_range = args.grid_range # nm grid_len = args.grid_len # 1 beta = args.beta / KB # mol/kJ num_links = args.num_links # 1 density_out = args.density_out # Calculate values. harmonic = harmonic_potential(m=mass, w=omega) ho_pift = PIFTMM([mass], [grid_range], [grid_len], harmonic, beta, num_links) estimated_potential_energy = ho_pift.expectation_value(harmonic) / KB # K print('V = {} K'.format(estimated_potential_energy)) # According to the virial theorem, <K> = <V> for a harmonic oscillator. print('E_virial = {} K'.format(2 * estimated_potential_energy)) # Output plot. if density_out: from pathintmatmult.plotting import plot2d xy_range = (-grid_range, grid_range) plot2d(ho_pift.density, xy_range, xy_range, density_out, x_label=r'$q_j / \mathrm{nm}$', y_label=r'$q_i / \mathrm{nm}$') --- FILE SEPARATOR --- #!/usr/bin/env python3 """ Harmonic oscillator PIGS example. An oscillator with an angular frequency of x kelvin has a ground state potential energy of x/4 kelvin and a total energy of x/2 kelvin. One with a mass of 1 electron mass and angular frequency of 1 K has a spread of about 120 nm in either direction from the origin; one with a mass of 10 electron masses spreads about 40 nm. The following are some possible combinations of arguments to try: --mass 1 --omega 1 --grid-range 120 --grid-len 100 --beta 12 --num-links 1200 --mass 10 --omega 1 --grid-range 40 --grid-len 100 --beta 12 --num-links 1200 If --trial-deform is not given, a uniform trial function is used. If it is given, the exact ground state is used as the trial fuction, but is deformed by the given factor (1 corresponds to no deformation). """ from argparse import ArgumentParser import numpy as np from pathintmatmult import PIGSMM from pathintmatmult.constants import HBAR, KB, ME from pathintmatmult.potentials import harmonic_potential # Parse arguments. p = ArgumentParser(description='Calculate HO ground state properties using PIGSMM.') p_config = p.add_argument_group('configuration') p_config.add_argument('--mass', metavar='M', type=float, required=True, help='particle mass (electron masses)') p_config.add_argument('--omega', metavar='W', type=float, required=True, help='angular frequency (K)') p_config.add_argument('--grid-range', metavar='R', type=float, required=True, help='grid range from origin (nm)') p_config.add_argument('--grid-len', metavar='L', type=int, required=True, help='number of points on grid') p_config.add_argument('--beta', metavar='B', type=float, required=True, help='propagation length (1/K)') p_config.add_argument('--num-links', metavar='P', type=int, required=True, help='number of links') p_config.add_argument('--trial-deform', metavar='D', type=float, help='deformation factor for exact trial function') p.add_argument('--wf-out', metavar='FILE', help='path to output wavefunction values') p.add_argument('--density-out', metavar='FILE', help='path to output density plot') args = p.parse_args() mass = args.mass * ME # g/mol omega = args.omega * KB / HBAR # 1/ps grid_range = args.grid_range # nm grid_len = args.grid_len # 1 beta = args.beta / KB # mol/kJ num_links = args.num_links # 1 trial_deform = args.trial_deform wf_out = args.wf_out density_out = args.density_out # Calculate values. harmonic = harmonic_potential(m=mass, w=omega) kwargs = {} if trial_deform is not None: alpha = trial_deform * mass * omega / HBAR # 1/nm^2 def trial_f(q: 'nm') -> '1': return np.exp(-0.5 * alpha * q[..., 0] ** 2) def trial_f_diff(q: 'nm') -> '1/nm^2': return alpha * (alpha * q[..., 0] ** 2 - 1) * trial_f(q) kwargs['trial_f'] = trial_f kwargs['trial_f_diffs'] = [trial_f_diff] ho_pigs = PIGSMM([mass], [grid_range], [grid_len], harmonic, beta, num_links, **kwargs) estimated_potential_energy = ho_pigs.expectation_value(harmonic) / KB # K estimated_total_energy = ho_pigs.energy_mixed / KB # K print('V = {} K'.format(estimated_potential_energy)) # According to the virial theorem, <K> = <V> for a harmonic oscillator. print('E_virial = {} K'.format(2 * estimated_potential_energy)) print('E_mixed = {} K'.format(estimated_total_energy)) # Output wavefunction. if wf_out: np.savetxt(wf_out, np.hstack((ho_pigs.grid, ho_pigs.ground_wf[:, np.newaxis]))) # Output plot. if density_out: from pathintmatmult.plotting import plot2d xy_range = (-grid_range, grid_range) plot2d(ho_pigs.density, xy_range, xy_range, density_out, x_label=r'$q_j / \mathrm{nm}$', y_label=r'$q_i / \mathrm{nm}$') --- FILE SEPARATOR --- #!/usr/bin/env python3 """ Entangled harmonic oscillators PIGS example. A pair of identical harmonic oscillators with a harmonic interaction potential. """ from argparse import ArgumentParser import numpy as np from pathintmatmult import PIGSIMM from pathintmatmult.constants import HBAR, KB, ME from pathintmatmult.potentials import harmonic_potential # Parse arguments. p = ArgumentParser(description='Calculate entangled HO ground state properties using PIGSMM2.') p_config = p.add_argument_group('configuration') p_config.add_argument('--mass', metavar='M', type=float, required=True, help='particle mass (electron masses)') p_config.add_argument('--omega-0', metavar='W', type=float, required=True, help='central potential angular frequency (K)') p_config.add_argument('--omega-int', metavar='W', type=float, required=True, help='interaction potential angular frequency (K)') p_config.add_argument('--grid-range', metavar='R', type=float, required=True, help='grid range from origin (nm)') p_config.add_argument('--grid-len', metavar='L', type=int, required=True, help='number of points on grid') p_config.add_argument('--beta', metavar='B', type=float, required=True, help='propagation length (1/K)') p_config.add_argument('--num-links', metavar='P', type=int, required=True, help='number of links') p_config.add_argument('--trial-deform', metavar='D', type=float, help='deformation factor for exact trial function') p.add_argument('--wf-out', metavar='FILE', help='path to output wavefunction values') p.add_argument('--density-diagonal-out', metavar='FILE', help='path to output diagonal density plot') args = p.parse_args() mass = args.mass * ME # g/mol omega_0 = args.omega_0 * KB / HBAR # 1/ps omega_int = args.omega_int * KB / HBAR # 1/ps grid_range = args.grid_range # nm grid_len = args.grid_len # 1 beta = args.beta / KB # mol/kJ num_links = args.num_links # 1 trial_deform = args.trial_deform wf_out = args.wf_out density_diagonal_out = args.density_diagonal_out # Calculate values. pot_0 = harmonic_potential(m=mass, w=omega_0) pot_int = harmonic_potential(m=mass, w=omega_int) def total_potential(qs: '[nm]') -> 'kJ/mol': return pot_0(qs[..., [0]]) + pot_0(qs[..., [1]]) + pot_int(qs[..., [0]] - qs[..., [1]]) kwargs = {} if trial_deform is not None: alpha = trial_deform * mass / HBAR # ps/nm^2 omega_R = omega_0 # 1/ps omega_r = np.sqrt(omega_0 * omega_0 + 2 * omega_int * omega_int) # 1/ps omega_p = omega_R + omega_r # 1/ps omega_m = omega_R - omega_r # 1/ps def trial_f(qs: '[nm]') -> '1': return np.exp(-0.25 * alpha * (omega_p * (qs[..., 0] ** 2 + qs[..., 1] ** 2) + 2 * omega_m * qs[..., 0] * qs[..., 1])) def trial_f_diff_0(qs: '[nm]') -> '1/nm^2': return 0.5 * alpha * (0.5 * alpha * (omega_p * qs[..., 0] + omega_m * qs[..., 1]) ** 2 - omega_p) * trial_f(qs) def trial_f_diff_1(qs: '[nm]') -> '1/nm^2': return 0.5 * alpha * (0.5 * alpha * (omega_m * qs[..., 0] + omega_p * qs[..., 1]) ** 2 - omega_p) * trial_f(qs) kwargs['trial_f'] = trial_f kwargs['trial_f_diffs'] = [trial_f_diff_0, trial_f_diff_1] ho_pigs = PIGSIMM([mass, mass], [grid_range, grid_range], [grid_len, grid_len], total_potential, beta, num_links, **kwargs) estimated_potential_energy = ho_pigs.expectation_value(total_potential) / KB # K estimated_total_energy = ho_pigs.energy_mixed / KB # K estimated_trace = ho_pigs.trace_renyi2 print('V = {} K'.format(estimated_potential_energy)) print('E_mixed = {} K'.format(estimated_total_energy)) print('trace = {}'.format(estimated_trace)) # Output wavefunction. if wf_out: np.savetxt(wf_out, np.hstack((ho_pigs.grid, ho_pigs.ground_wf[:, np.newaxis]))) # Output plot. if density_diagonal_out: from pathintmatmult.plotting import plot2d xy_range = (-grid_range, grid_range) density = ho_pigs.density_diagonal.reshape(grid_len, grid_len) plot2d(density, xy_range, xy_range, density_diagonal_out, x_label=r'$q_2 / \mathrm{nm}$', y_label=r'$q_1 / \mathrm{nm}$') --- FILE SEPARATOR --- from .nmm import PIFTMM, PIGSIMM, PIGSMM --- FILE SEPARATOR --- """ Numerical matrix multiplication for path integrals. """ from itertools import product import numpy as np from .constants import HBAR from .tools import cached class PIMM: """ Path Integrals via Matrix Multiplication Base class for various kinds of path integral implementations. """ def __init__(self, masses: '[g/mol]', grid_ranges: '[nm]', grid_lens: '[1]', pot_f: '[nm] -> kJ/mol', beta: 'mol/kJ', num_links: '1'): """ Note: When pot_f receives an N-dimensional array as input, it needs to map over it, returning an (N-1)-dimensional array. Note: The "particles" are actually any Cartesian degrees of freedom. One might have the same configuration (masses and grids) for a 3-dimensional 1-particle system as for a 1-dimensional 3-particle system. Of course, the coordinate arrays must be interpreted appropriately in each case (whether by the potential function or by the user of the output density). Parameters: masses: Masses of the particles. grid_ranges: Where the grids are truncated. Each grid is symmetric about the origin. grid_lens: How many points are on the grids. beta: Propagation length of the entire path. num_links: Number of links in the entire path. pot_f: Potential experienced by the particles in some spatial configuration. """ assert len(masses) == len(grid_ranges) == len(grid_lens), \ 'Numbers of configuration items must match.' assert all(m > 0 for m in masses), 'Masses must be positive.' assert all(gr > 0 for gr in grid_ranges), 'Grids must have positive lengths.' assert all(gl >= 2 for gl in grid_lens), 'Grids must have at least two points.' assert beta > 0, 'Beta must be positive.' assert num_links >= 2, 'Must have at least two links.' self._masses = np.array(masses) self._grid_ranges = np.array(grid_ranges) self._grid_lens = np.array(grid_lens) self._pot_f = pot_f self._beta = beta self._num_links = num_links # For cached decorator. self._cached = {} @property def masses(self) -> '[g/mol]': return self._masses @property def grid_ranges(self) -> '[nm]': return self._grid_ranges @property def grid_lens(self) -> '[1]': return self._grid_lens @property def pot_f(self) -> '[nm] -> kJ/mol': return self._pot_f @property def beta(self) -> 'mol/kJ': return self._beta @property def num_links(self) -> '1': return self._num_links @property @cached def tau(self) -> 'mol/kJ': """ High-temperature propagator length. """ return self.beta / self.num_links @property @cached def num_points(self) -> '1': """ Number of points in the coordinate vector. """ return np.prod(self.grid_lens) @property @cached def grid(self) -> '[[nm]]': """ Vector of the positions corresponding to the grid points. This is not a vector in the sense of a 1-dimensional array, because each element is itself a vector of coordinates for each particle. However, it can be thought of as the tensor product of the 1-dimensional position vectors. """ grids = [np.linspace(-gr, gr, gl) for (gr, gl) in zip(self.grid_ranges, self.grid_lens)] result = np.array(list(product(*grids))) assert result.shape == (self.num_points, len(self.masses)) return result @property @cached def volume_element(self) -> 'nm^N': """ Effective volume taken up by each grid point. """ return np.prod(2 * self.grid_ranges / (self.grid_lens - 1)) @property @cached def pot_f_grid(self) -> '[kJ/mol]': """ Potential function evaluated on the grid. """ return self.pot_f(self.grid) @property @cached def rho_tau(self) -> '[[1/nm^N]]': """ Matrix for the high-temperature propagator. """ prefactors_K = self.masses / (2 * HBAR * HBAR * self.tau) # [1/nm^2] prefactor_V = self.tau / 2 # mol/kJ prefactor_front = np.sqrt(np.prod(prefactors_K) / np.pi) # 1/nm^N K = np.empty((self.num_points, self.num_points)) # [[nm^2]] V = np.empty_like(K) # [[kJ/mol]] for i, q_i in enumerate(self.grid): for j, q_j in enumerate(self.grid): K[i, j] = np.sum(prefactors_K * (q_i - q_j) ** 2) V[i, j] = self.pot_f_grid[i] + self.pot_f_grid[j] return prefactor_front * np.exp(-K - prefactor_V * V) @property def density_diagonal(self): raise NotImplementedError() def expectation_value(self, property_f: '[nm] -> X') -> 'X': """ Expectation value of property_f. Note: This is only implemented for properties that are diagonal in the position representation. Note: When property_f receives an N-dimensional array as input, it should behave in the same manner as pot_f. """ return np.dot(self.density_diagonal, property_f(self.grid)) class PIFTMM(PIMM): """ Path Integral at Finite Temperature via Matrix Multiplication Calculate the approximate thermal density matrix of a system comprised of one or more particles in an arbitrary potential on a discretized and truncated grid. The density matrix is determined via numerical matrix multiplication of high-temperature matrices. """ @property @cached def rho_beta(self) -> '[[1/nm^N]]': """ Matrix for the full path propagator. """ power = self.num_links - 1 eigvals, eigvecs = np.linalg.eigh(self.volume_element * self.rho_tau) result = np.dot(np.dot(eigvecs, np.diag(eigvals ** power)), eigvecs.T) return result / self.volume_element @property @cached def density(self) -> '[[1]]': """ Normalized thermal density matrix. """ density = self.rho_beta # Explicitly normalize. density /= density.diagonal().sum() return density @property @cached def density_diagonal(self) -> '[1]': """ Normalized thermal diagonal density. """ return self.density.diagonal() class PIGSMM(PIMM): """ Path Integral Ground State via Matrix Multiplication Calculate the approximate ground state wavefunction of a system comprised of one or more particles in an arbitrary potential on a discretized and truncated grid. The wavefunction is determined via imaginary time propagation from a trial function using numerical matrix multiplication. """ def __init__(self, masses: '[g/mol]', grid_ranges: '[nm]', grid_lens: '[1]', pot_f: '[nm] -> kJ/mol', beta: 'mol/kJ', num_links: '1', *, trial_f: '[nm] -> 1' = None, trial_f_diffs: '[[nm] -> 1/nm^2]' = None): """ See PIMM.__init__ for more details. Note: The convention used is that beta represents the entire path, so the propagation length from the trial function to the middle of the path is beta/2. Note: When trial_f receives an N-dimensional array as input, it should behave in the same manner as pot_f. Parameters: trial_f: Approximation to the ground state wavefunction. If none is provided, a uniform trial function is used. trial_f_diffs: Second derivatives of trial_f. One function must be specified for each particle. """ super().__init__(masses, grid_ranges, grid_lens, pot_f, beta, num_links) assert num_links % 2 == 0, 'Number of links must be even.' if trial_f is not None: assert trial_f_diffs is not None, 'Derivatives must be provided.' assert len(trial_f_diffs) == len(masses), 'Number of derivatives must match.' self._trial_f = trial_f self._trial_f_diffs = trial_f_diffs @property def trial_f(self) -> '[nm] -> 1': return self._trial_f @property def trial_f_diffs(self) -> '[[nm] -> 1/nm^2]': return self._trial_f_diffs @property @cached def uniform_trial_f_grid(self) -> '[1]': """ Unnormalized uniform trial function evaluated on the grid. """ return np.ones(self.num_points) @property @cached def trial_f_grid(self) -> '[1]': """ Unnormalized trial function evaluated on the grid. """ if self.trial_f is None: # Default to a uniform trial function. return self.uniform_trial_f_grid return self.trial_f(self.grid) @property @cached def uniform_trial_f_diffs_grid(self) -> '[[1/nm^2]]': """ Unnormalized uniform trial function derivatives evaluated on the grid. """ return np.zeros(self.grid.T.shape) @property @cached def trial_f_diffs_grid(self) -> '[[1/nm^2]]': """ Unnormalized trial function derivatives evaluated on the grid. """ if self.trial_f is None: # Default to a uniform trial function. return self.uniform_trial_f_diffs_grid result = np.empty(self.grid.T.shape) for i, f in enumerate(self.trial_f_diffs): result[i] = f(self.grid) return result @property @cached def rho_beta_half(self) -> '[[1/nm^N]]': """ Matrix for the half path propagator. """ power = self.num_links // 2 eigvals, eigvecs = np.linalg.eigh(self.volume_element * self.rho_tau) result = np.dot(np.dot(eigvecs, np.diag(eigvals ** power)), eigvecs.T) return result / self.volume_element @property @cached def rho_beta(self) -> '[[1/nm^N]]': """ Matrix for the full path propagator. """ return self.volume_element * np.dot(self.rho_beta_half, self.rho_beta_half) @property @cached def ground_wf(self) -> '[1]': """ Normalized ground state wavefunction. """ ground_wf = np.dot(self.rho_beta_half, self.trial_f_grid) # Explicitly normalize. ground_wf /= np.sqrt(np.sum(ground_wf ** 2)) return ground_wf @property @cached def density(self) -> '[[1]]': """ Normalized ground state density matrix. """ return np.outer(self.ground_wf, self.ground_wf) @property @cached def density_diagonal(self) -> '[1]': """ Normalized ground state diagonal density. """ return self.ground_wf ** 2 @property @cached def energy_mixed(self) -> 'kJ/mol': """ Ground state energy calculated using the mixed estimator. """ ground_wf_full = np.dot(self.rho_beta, self.trial_f_grid) # [1/nm^N] trial_f_diffs = np.sum(self.trial_f_diffs_grid / self.masses[:, np.newaxis], axis=0) # [mol/g nm^2] energy_V = np.sum(ground_wf_full * self.pot_f_grid * self.trial_f_grid) # kJ/mol nm^N energy_K = np.dot(ground_wf_full, trial_f_diffs) # mol/g nm^(N+2) normalization = np.dot(ground_wf_full, self.trial_f_grid) # 1/nm^N return (energy_V - 0.5 * HBAR * HBAR * energy_K) / normalization @property @cached def density_reduced(self) -> '[[1]]': """ Density matrix for the first particle, with the other traced out. Only implemented for two-particle systems. """ assert len(self.masses) == 2 new_len = self.grid_lens[0] other_len = self.grid_lens[1] density_new = np.zeros((new_len, new_len)) for i in range(new_len): for j in range(new_len): for t in range(other_len): # Avoid computing self.density here. density_new[i, j] += self.ground_wf[other_len * i + t] * self.ground_wf[other_len * j + t] return density_new @property @cached def trace_renyi2(self) -> '1': """ Trace of the square of the reduced density matrix. The 2nd Rényi entropy is the negative logarithm of this quantity. """ return np.linalg.matrix_power(self.density_reduced, 2).trace() class PIGSIMM(PIGSMM): """ Path Integral Ground State via Implicit Matrix Multiplication Calculate the approximate ground state wavefunction of a system comprised of one or more particles in an arbitrary potential on a discretized and truncated grid. The wavefunction is determined via imaginary time propagation from a trial function using implicit numerical matrix-vector multiplication, where the full density matrix is never constructed. """ @property def rho_tau(self): # We don't build any (full) matrices! raise NotImplementedError() @property def rho_beta_half(self): raise NotImplementedError() @property def rho_beta(self): raise NotImplementedError() def _propagate_trial(self, start_grid: '[1]', power: '1') -> '[1]': """ Multiply start_grid by (rho_tau ** power). """ prefactors_K = self.masses / (2 * HBAR * HBAR * self.tau) # [1/nm^2] pot_exp = np.exp(-0.5 * self.tau * self.pot_f_grid) # [1] temp_wf1 = start_grid.copy() # [1] temp_wf2 = np.zeros_like(temp_wf1) # [1] for _ in range(power): temp_wf1 *= pot_exp for q, wf in zip(self.grid, temp_wf1): # The temporary array here is the same shape as self.grid. temp_wf2 += np.exp(-np.sum(prefactors_K * (self.grid - q) ** 2, axis=1)) * wf temp_wf2 *= pot_exp # Explicitly normalize at each step for stability. temp_wf1 = temp_wf2 / np.sqrt(np.sum(temp_wf2 ** 2)) temp_wf2 = np.zeros_like(temp_wf1) return temp_wf1 @property @cached def ground_wf(self) -> '[1]': """ Normalized ground state wavefunction. """ return self._propagate_trial(self.trial_f_grid, self.num_links // 2) @property def density(self): raise NotImplementedError() @property @cached def energy_mixed(self) -> 'kJ/mol': """ Ground state energy calculated using the mixed estimator. """ ground_wf_full = self._propagate_trial(self.ground_wf, self.num_links // 2) # [1] trial_f_diffs = np.sum(self.trial_f_diffs_grid / self.masses[:, np.newaxis], axis=0) # [mol/g nm^2] energy_V = np.sum(ground_wf_full * self.pot_f_grid * self.trial_f_grid) # kJ/mol energy_K = np.dot(ground_wf_full, trial_f_diffs) # mol/g nm^2 normalization = np.dot(ground_wf_full, self.trial_f_grid) # 1 return (energy_V - 0.5 * HBAR * HBAR * energy_K) / normalization --- FILE SEPARATOR --- """ Convenience functions for plotting the generated data. """ import matplotlib.pyplot as plt def plot2d(data: '[[X]]', x_range, y_range, out_path, *, x_label=None, y_label=None, colormap='jet', colorbar=True): """ Plot the data as a heat map. The resulting image is saved to out_path. Parameters: data: Two-dimensional array of numbers to plot. x_range: Tuple containing the min and max values for the x axis. y_range: Tuple containing the min and max values for the y axis. out_path: The path to the file where the image should be written. The extension determines the image format (e.g. pdf, png). x_label: Label for the x axis. y_label: Label for the y axis. colormap: matplotlib colormap to use for the image. colorbar: Whether to display the colorbar. """ fig = plt.figure() ax = fig.gca() img = ax.imshow(data, cmap=colormap, origin='lower', extent=(x_range + y_range)) if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) if colorbar: fig.colorbar(img, drawedges=False) fig.savefig(out_path, bbox_inches='tight', transparent=True) --- FILE SEPARATOR --- """ Example potential functions. """ import numpy as np def free_particle_potential() -> 'nm -> kJ/mol': """ Free particle potential. """ def free_particle(q: 'nm') -> 'kJ/mol': # Remove the inner-most dimension. return np.zeros(q.shape[:-1]) return free_particle def harmonic_potential(k: 'kJ/mol nm^2' = None, m: 'g/mol' = None, w: '1/ps' = None) -> 'nm -> kJ/mol': """ Harmonic potential relative to the origin. Note: Either k or (m and w) must be specified. Parameters: k: Spring constant. m: Mass of particle. w: Angular frequency of oscillator. """ if k is not None: force_constant = k # kJ/mol nm^2 elif m is not None and w is not None: force_constant = m * w * w # kJ/mol nm^2 else: assert False, 'Must provide either k or (m and w).' def harmonic(q: 'nm') -> 'kJ/mol': return force_constant * q[..., 0] * q[..., 0] / 2 return harmonic --- FILE SEPARATOR --- """ Assorted tools. """ from functools import wraps def cached(f): """ A simple cache for constant instance methods. Requires a _cached dict on the instance. """ @wraps(f) def wrapped(self, *args, **kwargs): if f not in self._cached: self._cached[f] = f(self, *args, **kwargs) return self._cached[f] return wrapped
[ "/examples/pift_harmonic_oscillator.py", "/examples/pigs_harmonic_oscillator.py", "/examples/pigs_harmonic_oscillator_entangled.py", "/pathintmatmult/__init__.py", "/pathintmatmult/nmm.py", "/pathintmatmult/plotting.py", "/pathintmatmult/potentials.py", "/pathintmatmult/tools.py" ]
00-00-00-11/Discord-S.C.U.M
import inspect class LogLevel: INFO = '\033[94m' OK = '\033[92m' WARNING = '\033[93m' DEFAULT = '\033[m' class Logger: @staticmethod def LogMessage(msg, hex_data='', to_file=False, to_console=True, log_level=LogLevel.INFO): #to_file was acting a bit buggy so I decided to remove it altogether for now stack = inspect.stack() function_name = "({}->{})".format(str(stack[1][0].f_locals['self']).split(' ')[0], stack[1][3]) if to_console is True: if hex_data != '': print('{} {}'.format(log_level, " ".join([h.encode('hex') for h in hex_data]))) else: print('{} [+] {} {}'.format(log_level, function_name, msg)) print(LogLevel.DEFAULT) # restore console color --- FILE SEPARATOR --- from .discum import * from .gateway.gateway import * from .Logger import * from .login.Login import * --- FILE SEPARATOR --- from .guild.guild import Guild from .messages.messages import Messages from .messages.embed import Embedder from .user.user import User from .login.Login import * from .gateway.gateway import * import time import random import re import user_agents class SessionSettingsError(Exception): pass class Client: def __init__(self, email="none", password="none", token="none", proxy_host=None, proxy_port=None, user_agent="random", log=True): #not using None on email, pass, and token since that could get flagged by discord... self.log = log self.__user_token = token self.__user_email = email self.__user_password = password self.__proxy_host = None if proxy_host in (None,False) else proxy_host self.__proxy_port = None if proxy_host in (None,False) else proxy_host self.session_settings = [] #consists of 2 parts, READY and READY_SUPPLEMENTAL self.discord = 'https://discord.com/api/v8/' self.websocketurl = 'wss://gateway.discord.gg/?encoding=json&v=8' if user_agent != "random": self.__user_agent = user_agent else: from random_user_agent.user_agent import UserAgent #only really want to import this if needed...which is why it's down here self.__user_agent = UserAgent(limit=100).get_random_user_agent() if self.log: print('Randomly generated user agent: '+self.__user_agent) parseduseragent = user_agents.parse(self.__user_agent) self.ua_data = {'os':parseduseragent.os.family,'browser':parseduseragent.browser.family,'device':parseduseragent.device.family if parseduseragent.is_mobile else '','browser_user_agent':self.__user_agent,'browser_version':parseduseragent.browser.version_string,'os_version':parseduseragent.os.version_string} if self.__user_token in ("none",None,False): #assuming email and pass are given... self.__login = Login(self.discord,self.__user_email,self.__user_password,self.__user_agent,self.__proxy_host,self.__proxy_port,self.log) self.__user_token = self.__login.GetToken() #update token from "none" to true string value time.sleep(1) self.headers = { "Host": "discord.com", "User-Agent": self.__user_agent, "Accept": "*/*", "Accept-Language": "en-US", "Authorization": self.__user_token, "Connection": "keep-alive", "keep-alive" : "timeout=10, max=1000", "TE": "Trailers", "Pragma": "no-cache", "Cache-Control": "no-cache", "Referer": "https://discord.com/channels/@me", "Content-Type": "application/json" } self.s = requests.Session() self.s.headers.update(self.headers) if self.__proxy_host != None: #self.s.proxies defaults to {} self.proxies = { 'http': self.__proxy_host+':'+self.__proxy_port, 'https': self.__proxy_host+':'+self.__proxy_port } self.s.proxies.update(proxies) if self.log: print("Retrieving Discord's build number...") discord_login_page_exploration = self.s.get('https://discord.com/login').text time.sleep(1) try: #getting the build num is kinda experimental since who knows if discord will change where the build number is located... file_with_build_num = 'https://discord.com/assets/'+re.compile(r'assets/+([a-z0-9]+)\.js').findall(discord_login_page_exploration)[-2]+'.js' #fastest solution I could find since the last js file is huge in comparison to 2nd from last req_file_build = self.s.get(file_with_build_num).text index_of_build_num = req_file_build.find('buildNumber')+14 self.discord_build_num = int(req_file_build[index_of_build_num:index_of_build_num+5]) self.ua_data['build_num'] = self.discord_build_num #putting this onto ua_data since getting the build num won't necessarily work if self.log: print('Discord is currently on build number '+str(self.discord_build_num)) except: if self.log: print('Could not retrieve discord build number.') self.gateway = GatewayServer(self.websocketurl, self.__user_token, self.ua_data, self.__proxy_host, self.__proxy_port, self.log) ''' test connection (this function was originally in discum and was created by Merubokkusu) ''' def connectionTest(self): #,proxy): url=self.discord+'users/@me/affinities/users' connection = self.s.get(url) if(connection.status_code == 200): if self.log: print("Connected") else: if self.log: print("Incorrect Token") return connection ''' discord snowflake to unix timestamp and back ''' def snowflake_to_unixts(self,snowflake): return int((snowflake/4194304+1420070400000)/1000) def unixts_to_snowflake(self,unixts): return int((unixts*1000-1420070400000)*4194304) ''' Messages ''' #create DM def createDM(self,recipients): return Messages(self.discord,self.s,self.log).createDM(recipients) #get recent messages def getMessages(self,channelID,num=1,beforeDate=None,aroundMessage=None): # num <= 100, beforeDate is a snowflake return Messages(self.discord,self.s,self.log).getMessages(channelID,num,beforeDate,aroundMessage) #send text or embed messages def sendMessage(self,channelID,message,embed="",tts=False): return Messages(self.discord,self.s,self.log).sendMessage(channelID,message,embed,tts) #send files (local or link) def sendFile(self,channelID,filelocation,isurl=False,message=""): return Messages(self.discord,self.s,self.log).sendFile(channelID,filelocation,isurl,message) #search messages def searchMessages(self,guildID,channelID=None,userID=None,mentionsUserID=None,has=None,beforeDate=None,afterDate=None,textSearch=None,afterNumResults=None): return Messages(self.discord,self.s,self.log).searchMessages(guildID,channelID,userID,mentionsUserID,has,beforeDate,afterDate,textSearch,afterNumResults) #filter searchMessages, takes in the output of searchMessages (a requests response object) and outputs a list of target messages def filterSearchResults(self,searchResponse): return Messages(self.discord,self.s,self.log).filterSearchResults(searchResponse) #sends the typing action for 10 seconds (or technically until you change the page) def typingAction(self,channelID): return Messages(self.discord,self.s,self.log).typingAction(channelID) #delete message def deleteMessage(self,channelID,messageID): return Messages(self.discord,self.s,self.log).deleteMessage(channelID,messageID) #edit message def editMessage(self,channelID,messageID,newMessage): return Messages(self.discord,self.s,self.log).editMessage(channelID, messageID, newMessage) #pin message def pinMessage(self,channelID,messageID): return Messages(self.discord,self.s,self.log).pinMessage(channelID,messageID) #un-pin message def unPinMessage(self,channelID,messageID): return Messages(self.discord,self.s,self.log).unPinMessage(channelID,messageID) #get pinned messages def getPins(self,channelID): return Messages(self.discord,self.s,self.log).getPins(channelID) #add reaction def addReaction(self,channelID,messageID,emoji): return Messages(self.discord,self.s,self.log).addReaction(channelID,messageID,emoji) #remove reaction def removeReaction(self,channelID,messageID,emoji): return Messages(self.discord,self.s,self.log).removeReaction(channelID,messageID,emoji) #acknowledge message (mark message read) def ackMessage(self,channelID,messageID,ackToken=None): return Messages(self.discord,self.s,self.log).ackMessage(channelID,messageID,ackToken) #unacknowledge message (mark message unread) def unAckMessage(self,channelID,messageID,numMentions=0): return Messages(self.discord,self.s,self.log).unAckMessage(channelID,messageID,numMentions) ''' User relationships ''' #create outgoing friend request def requestFriend(self,user): #you can input a userID(snowflake) or a user discriminator return User(self.discord,self.s,self.log).requestFriend(user) #accept incoming friend request def acceptFriend(self,userID): return User(self.discord,self.s,self.log).acceptFriend(userID) #remove friend OR unblock user def removeRelationship(self,userID): return User(self.discord,self.s,self.log).removeRelationship(userID) #block user def blockUser(self,userID): return User(self.discord,self.s,self.log).blockUser(userID) ''' Profile edits ''' # change name def changeName(self,name): return User(self.discord,self.s,self.log).changeName(self.email,self.password,name) # set status def setStatus(self,status): return User(self.discord,self.s,self.log).setStatus(status) # set avatar def setAvatar(self,imagePath): return User(self.discord,self.s,self.log).setAvatar(self.email,self.password,imagePath) ''' Guild/Server stuff ''' #get guild info from invite code def getInfoFromInviteCode(self,inviteCode): return Guild(self.discord,self.s,self.log).getInfoFromInviteCode(inviteCode) #join guild with invite code def joinGuild(self,inviteCode): return Guild(self.discord,self.s,self.log).joinGuild(inviteCode) #kick a user def kick(self,guildID,userID,reason=""): return Guild(self.discord,self.s,self.log).kick(guildID,userID,reason) #ban a user def ban(self,guildID,userID,deleteMessagesDays=0,reason=""): return Guild(self.discord,self.s,self.log).ban(guildID,userID,deleteMessagesDays,reason) #look up a user in a guild def getGuildMember(self,guildID,userID): return Guild(self.discord,self.s,self.log).getGuildMember(guildID,userID) --- FILE SEPARATOR --- from .gateway import * from .sessionsettings import * --- FILE SEPARATOR --- import websocket import json import time import random import base64 if __import__('sys').version.split(' ')[0] < '3.0.0': import thread else: import _thread as thread from .sessionsettings import SessionSettings class GatewayServer: class LogLevel: SEND = '\033[94m' RECEIVE = '\033[92m' WARNING = '\033[93m' DEFAULT = '\033[m' class OPCODE: #https://discordapp.com/developers/docs/topics/opcodes-and-status-codes # Name Code Client Action Description DISPATCH = 0 # Receive dispatches an event HEARTBEAT = 1 # Send/Receive used for ping checking IDENTIFY = 2 # Send used for client handshake STATUS_UPDATE = 3 # Send used to update the client status VOICE_UPDATE = 4 # Send used to join/move/leave voice channels # 5 # ??? ??? RESUME = 6 # Send used to resume a closed connection RECONNECT = 7 # Receive used to tell clients to reconnect to the gateway REQUEST_GUILD_MEMBERS = 8 # Send used to request guild members INVALID_SESSION = 9 # Receive used to notify client they have an invalid session id HELLO = 10 # Receive sent immediately after connecting, contains heartbeat and server debug information HEARTBEAT_ACK = 11 # Sent immediately following a client heartbeat that was received GUILD_SYNC = 12 # def __init__(self, websocketurl, token, ua_data, proxy_host=None, proxy_port=None, log=True): self.token = token self.ua_data = ua_data self.auth = { "token": self.token, "capabilities": 61, "properties": { "os": self.ua_data["os"], "browser": self.ua_data["browser"], "device": self.ua_data["device"], "browser_user_agent": self.ua_data["browser_user_agent"], "browser_version": self.ua_data["browser_version"], "os_version": self.ua_data["os_version"], "referrer": "", "referring_domain": "", "referrer_current": "", "referring_domain_current": "", "release_channel": "stable", "client_build_number": 71420, "client_event_source": None }, "presence": { "status": "online", "since": 0, "activities": [], "afk": False }, "compress": False, "client_state": { "guild_hashes": {}, "highest_last_message_id": "0", "read_state_version": 0, "user_guild_settings_version": -1 } } if 'build_num' in self.ua_data and self.ua_data['build_num']!=71420: self.auth['properties']['client_build_number'] = self.ua_data['build_num'] self.proxy_host = None if proxy_host in (None,False) else proxy_host self.proxy_port = None if proxy_port in (None,False) else proxy_port self.log = log self.interval = None self.session_id = None self.sequence = 0 self.READY = False #becomes True once READY_SUPPLEMENTAL is received self.settings_ready = {} self.settings_ready_supp = {} #websocket.enableTrace(True) self.ws = self._get_ws_app(websocketurl) self._after_message_hooks = [] self._last_err = None self.connected = False self.resumable = False self.voice_data = {} #voice connections dependent on current (connected) session #WebSocketApp, more info here: https://github.com/websocket-client/websocket-client/blob/master/websocket/_app.py#L79 def _get_ws_app(self, websocketurl): sec_websocket_key = base64.b64encode(bytes(random.getrandbits(8) for _ in range(16))).decode() #https://websockets.readthedocs.io/en/stable/_modules/websockets/handshake.html headers = { "Host": "gateway.discord.gg", "Connection": "Upgrade", "Pragma": "no-cache", "Cache-Control": "no-cache", "User-Agent": self.ua_data["browser_user_agent"], "Upgrade": "websocket", "Origin": "https://discord.com", "Sec-WebSocket-Version": "13", "Accept-Language": "en-US", "Sec-WebSocket-Key": sec_websocket_key } #more info: https://stackoverflow.com/a/40675547 ws = websocket.WebSocketApp(websocketurl, header = headers, on_open=lambda ws: self.on_open(ws), on_message=lambda ws, msg: self.on_message(ws, msg), on_error=lambda ws, msg: self.on_error(ws, msg), on_close=lambda ws: self.on_close(ws) ) return ws def on_open(self, ws): self.connected = True if self.log: print("Connected to websocket.") if not self.resumable: self.send({"op": self.OPCODE.IDENTIFY, "d": self.auth}) else: self.resumable = False self.send({"op": self.OPCODE.RESUME, "d": {"token": self.token, "session_id": self.session_id, "seq": self.sequence-1 if self.sequence>0 else self.sequence}}) def on_message(self, ws, message): self.sequence += 1 resp = json.loads(message) if self.log: print('%s< %s%s' % (self.LogLevel.RECEIVE, resp, self.LogLevel.DEFAULT)) if resp['op'] == self.OPCODE.HELLO: #only happens once, first message sent to client self.interval = (resp["d"]["heartbeat_interval"]-2000)/1000 thread.start_new_thread(self._heartbeat, ()) elif resp['op'] == self.OPCODE.INVALID_SESSION: if self.log: print("Invalid session.") if self.resumable: self.resumable = False self.sequence = 0 self.close() else: self.sequence = 0 self.close() if self.interval == None: if self.log: print("Identify failed.") self.close() if resp['t'] == "READY": self.session_id = resp['d']['session_id'] self.settings_ready = resp['d'] elif resp['t'] == "READY_SUPPLEMENTAL": self.resumable = True #completely successful identify self.settings_ready_supp = resp['d'] self.SessionSettings = SessionSettings(self.settings_ready, self.settings_ready_supp) self.READY = True elif resp['t'] in ("VOICE_SERVER_UPDATE", "VOICE_STATE_UPDATE"): self.voice_data.update(resp['d']) #called twice, resulting in a dictionary with 12 keys thread.start_new_thread(self._response_loop, (resp,)) def on_error(self, ws, error): if self.log: print('%s%s%s' % (self.LogLevel.WARNING, error, self.LogLevel.DEFAULT)) self._last_err = error def on_close(self, ws): self.connected = False self.READY = False #reset self.READY if self.log: print('websocket closed') #Discord needs heartbeats, or else connection will sever def _heartbeat(self): if self.log: print("entering heartbeat") while self.connected: time.sleep(self.interval) if not self.connected: break self.send({"op": self.OPCODE.HEARTBEAT,"d": self.sequence-1 if self.sequence>0 else self.sequence}) #just a wrapper for ws.send def send(self, payload): if self.log: print('%s> %s%s' % (self.LogLevel.SEND, payload, self.LogLevel.DEFAULT)) self.ws.send(json.dumps(payload)) def close(self): self.connected = False self.READY = False #reset self.READY if self.log: print('websocket closed') #sometimes this message will print twice. Don't worry, that's not an error. self.ws.close() #the next 2 functions come from https://github.com/scrubjay55/Reddit_ChatBot_Python/blob/master/Reddit_ChatBot_Python/Utils/WebSockClient.py (Apache License 2.0) def command(self, func): self._after_message_hooks.append(func) return func def _response_loop(self, resp): for func in self._after_message_hooks: if func(resp): break def removeCommand(self, func): try: self._after_message_hooks.remove(func) except ValueError: if self.log: print('%s not found in _after_message_hooks.' % func) pass def clearCommands(self): self._after_message_hooks = [] def resetSession(self): #just resets some variables that in-turn, resets the session (client side). Do not run this while running run(). self.interval = None self.session_id = None self.sequence = 0 self.READY = False #becomes True once READY_SUPPLEMENTAL is received self.settings_ready = {} self.settings_ready_supp = {} self._last_err = None self.voice_data = {} self.resumable = False #you can't resume anyways without session_id and sequence #modified version of function run_4ever from https://github.com/scrubjay55/Reddit_ChatBot_Python/blob/master/Reddit_ChatBot_Python/Utils/WebSockClient.py (Apache License 2.0) def run(self, auto_reconnect=True): while auto_reconnect: self.ws.run_forever(ping_interval=10, ping_timeout=5, http_proxy_host=self.proxy_host, http_proxy_port=self.proxy_port) if isinstance(self._last_err, websocket._exceptions.WebSocketAddressException) or isinstance(self._last_err, websocket._exceptions.WebSocketTimeoutException): if self.resumable: waitTime = random.randrange(1,6) if self.log: print("Connection Dropped. Attempting to resume last valid session in %s seconds." % waitTime) time.sleep(waitTime) else: if self.log: print("Connection Dropped. Retrying in 10 seconds.") time.sleep(10) continue elif not self.resumable: #this happens if you send an IDENTIFY but discord says INVALID_SESSION in response if self.log: print("Connection Dropped. Retrying in 10 seconds.") time.sleep(10) continue else: self.resumable = True return 0 if not auto_reconnect: self.ws.run_forever(ping_interval=10, ping_timeout=5, http_proxy_host=self.proxy_host, http_proxy_port=self.proxy_port) --- FILE SEPARATOR --- from ..Logger import * import requests #import requests[socks] #youll need to pip install requests[socks] (this is only if youre using socks) import json class Login: ''' Manages HTTP authentication ''' def __init__(self, discordurlstart, user_email, user_password,user_agent,proxy_host,proxy_port,log): self.log = log self.URL = discordurlstart + "auth/login" self.__user_email = user_email self.__user_password = user_password self.__user_agent = user_agent self.__proxy_host = proxy_host self.__proxy_port = proxy_port self.__token = None def Connect(self): session = requests.Session() if self.__proxy_host not in (None,False): proxies = { 'http': self.__proxy_host+':'+self.__proxy_port, 'https': self.__proxy_host+':'+self.__proxy_port } session.proxies.update(proxies) session.headers.update({"User-Agent": self.__user_agent}) session.headers.update({'X-Super-Properties': ''}) session.headers.update({"Content-Type": "application/json"}) http_auth_data = '{{"email": "{}", "password": "{}", "undelete": false, "captcha_key": null, "login_source": null, "gift_code_sku_id": null}}'.format(self.__user_email, self.__user_password) if self.log: Logger.LogMessage('Post -> {}'.format(self.URL)) if self.log: Logger.LogMessage('{}'.format(http_auth_data)) response = session.post(self.URL, data=http_auth_data) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) self.__token = json.loads(response.content)['token'] def GetToken(self): if self.__token is None: self.Connect() return self.__token --- FILE SEPARATOR --- import requests import json import base64 from ..Logger import * class User(object): def __init__(self, discord, s, log): #s is the requests session object self.discord = discord self.s = s self.log = log #def getDMs(self): #websockets does this now # url = self.discord+"users/@me/channels" # return self.s.get(url) #def getGuilds(self): #websockets does this now # url = self.discord+"users/@me/guilds" # return self.s.get(url) #def getRelationships(self): #websockets does this now # url = self.discord+"users/@me/relationships" # return self.s.get(url) def requestFriend(self,user): if "#" in user: url = self.discord+"users/@me/relationships" body = {"username": user.split("#")[0], "discriminator": int(user.split("#")[1])} if self.log: Logger.LogMessage('Post -> {}'.format(url)) if self.log: Logger.LogMessage('{}'.format(str(body))) response = self.s.post(url, data=json.dumps(body)) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response url = self.discord+"users/@me/relationships/"+user if self.log: Logger.LogMessage('Put -> {}'.format(url)) response = self.s.put(url, data=json.dumps({})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response def acceptFriend(self,userID): url = self.discord+"users/@me/relationships/"+userID if self.log: Logger.LogMessage('Put -> {}'.format(url)) response = self.s.put(url, data=json.dumps({})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response def removeRelationship(self,userID): #for removing friends, unblocking people url = self.discord+"users/@me/relationships/"+userID if self.log: Logger.LogMessage('Delete -> {}'.format(url)) response = self.s.delete(url) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response def blockUser(self,userID): url = self.discord+"users/@me/relationships/"+userID if self.log: Logger.LogMessage('Put -> {}'.format(url)) if self.log: Logger.LogMessage('{}'.format(str({"type":2}))) response = self.s.put(url, data=json.dumps({"type":2})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response ''' Profile Edits ''' def changeName(self,email,password,name): url = self.discord+"users/@me" if self.log: Logger.LogMessage('Patch -> {}'.format(url)) if self.log: Logger.LogMessage('{}'.format(str({"username":name,"email":email,"password":password}))) response = self.s.patch(url, data=json.dumps({"username":name,"email":email,"password":password})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response def setStatus(self,status): url = self.discord+"users/@me/settings" if self.log: Logger.LogMessage('Patch -> {}'.format(url)) if(status == 0): # Online if self.log: Logger.LogMessage('{}'.format(str({"status":"online"}))) response = self.s.patch(url, data=json.dumps({"status":"online"})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response elif(status == 1): # Idle if self.log: Logger.LogMessage('{}'.format(str({"status":"idle"}))) response = self.s.patch(url, data=json.dumps({"status":"idle"})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response elif(status == 2): #Do Not Disturb if self.log: Logger.LogMessage('{}'.format(str({"status":"dnd"}))) response = self.s.patch(url, data=json.dumps({"status":"dnd"})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response elif (status == 3): #Invisible if self.log: Logger.LogMessage('{}'.format(str({"status":"invisible"}))) response = self.s.patch(url, data=json.dumps({"status":"invisible"})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response elif (status == ''): if self.log: Logger.LogMessage('{}'.format(str({"custom_status":None}))) response = self.s.patch(url, data=json.dumps({"custom_status":None})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response else: if self.log: Logger.LogMessage('{}'.format(str({"custom_status":{"text":status}}))) response = self.s.patch(url, data=json.dumps({"custom_status":{"text":status}})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response def setAvatar(self,email,password,imagePath): #local image path url = self.discord+"users/@me" if self.log: Logger.LogMessage('Patch -> {}'.format(url)) if self.log: Logger.LogMessage('{}'.format(str({"email":email,"password":password,"avatar":"data:image/png;base64,<encoded image data>","discriminator":None,"new_password":None}))) with open(imagePath, "rb") as image: encodedImage = base64.b64encode(image.read()).decode('utf-8') response = self.s.patch(url, data=json.dumps({"email":email,"password":password,"avatar":"data:image/png;base64,"+encodedImage,"discriminator":None,"new_password":None})) if self.log: Logger.LogMessage('Response <- {}'.format(response.text), log_level=LogLevel.OK) return response
[ "/discum/Logger.py", "/discum/__init__.py", "/discum/discum.py", "/discum/gateway/__init__.py", "/discum/gateway/gateway.py", "/discum/login/Login.py", "/discum/user/user.py" ]
00-00-00-11/Hummingbird
from . import dashboard from . import home from . import manage from . import success from . import upload from . import dashboardItem from . import moreInfoCount from . import moreInfoGender from . import moreInfoSalary from . import moreInfoJobs --- FILE SEPARATOR --- from flask import Blueprint, render_template, abort from lib.dataHandler import * dashboard = Blueprint('dashboard', __name__, template_folder='templates') @dashboard.route('/dashboard') def show(): return render_template('pages/dashboard.html', size = 4123, mfRatio = 51, meanTc = 251222, jobCount = 5) --- FILE SEPARATOR --- from flask import Blueprint, render_template, abort, request from lib.dataHandler import * dashboardItem = Blueprint('dashboardItem', __name__, template_folder='templates') @dashboardItem.route('/dashboardItem', methods=['GET','POST']) def samplefunction(): if (request.method == 'POST'): print(request.form['fileSub']) with open("blobs/"+request.form['fileSub']+".json") as json_file: data = json.load(json_file) print(data) num = data['count'] ratio = '%.3f'%data['ratio'] averageComp = data['meanTc'] uniqueJobs = data['jobs'] gend = int(data['p_val_g']*1000)/1000 rac = int(data['p_val_race']*1000)/1000 feedback = data['feedback'] # tValue = data['t value'] # permutations = data['data permutations'] return render_template('pages/dashboardItem.html', size = num, mfRatio = ratio, meanTc = averageComp, jobCount = uniqueJobs, p_val_g = gend, p_val_race = rac, recommendations = feedback) #, #tVal = tValue, #dataPermutations = permutations) else: return render_template('pages/dashboardItem.html') --- FILE SEPARATOR --- from flask import Blueprint, render_template, abort home = Blueprint('home', __name__, template_folder='templates') @home.route('/') def show(): return render_template('pages/home.html') --- FILE SEPARATOR --- from flask import Blueprint, render_template, abort import os manage = Blueprint('manage', __name__, template_folder='templates') @manage.route('/manage') def show(): files = os.listdir('blobs') for i in range(len(files)): files[i] = files[i][:-5] return render_template('pages/manage.html', files = files) --- FILE SEPARATOR --- from flask import Blueprint, render_template, abort, request from lib.dataHandler import * moreInfoJobs = Blueprint('moreInfoJobs', __name__, template_folder='templates') @moreInfoJobs.route('/moreInfoJobs', methods=['GET','POST']) def samplefunction(): print(request.form) # permutations = data['data permutations'] return render_template('/pages/moreInfoJobs.html') #, #tVal = tValue, #dataPermutations = permutations) --- FILE SEPARATOR --- from flask import Blueprint, render_template, abort, request import csvparser from subprocess import Popen success = Blueprint('success', __name__, template_folder='templates') @success.route('/success', methods=['GET', 'POST']) def upload_file(): if request.method == 'POST': f = request.files['file'] f.save('uploads/' + f.filename) Popen(['python', 'lib/dataHandler.py', 'uploads/'+ f.filename]) return render_template('forms/success.html', name = f.filename) --- FILE SEPARATOR --- from flask import Blueprint, render_template, abort upload = Blueprint('upload', __name__, template_folder='templates') @upload.route('/upload') def show(): return render_template('pages/upload.html') --- FILE SEPARATOR --- import csv import random from lib import Gender, Job, Race """ Generates a CSV file of sample size N. input: N- the sample size Sample_instructions: a dictionary with instructions on how to bias people { key- the metric to be unfair about: value - a dictionary{ key- the group in question: value- a number that indicates skew. eg 1.15 > 15% higher pay } } global_mean- a global average that is the relative comparison for all individual groups global_std- a global std for all. """ def generateCSV(sample_size, sample_instructions, global_mean, global_std): answer = list(sample_instructions) + ["wage"] for person in range(sample_size): person_attributes = [] weighed_mean = global_mean for discriminating_factor in list(sample_instructions): factor_types = sample_instructions[discriminating_factor] selected_attribute = random.choice(list(factor_types)) weighed_mean *=factor_types[selected_attribute] person_attributes += [selected_attribute] person_attributes += [int(100*random.gauss(weighed_mean, global_std))/100] answer.append(person_attributes) createCSV(answer) return answer def createCSV(lists): with open('sampledata.csv', 'w', newline='') as f: thewriter = csv.writer(f) thewriter.writerow(['race', 'gender', 'job', 'year', 'salary']) for row in lists: thewriter.writerow(row) instruction = { 'race' : { 'white': 1.5, 'black': 1, 'asian': 1.3, 'latino': 0.8, 'indigenous': .8, 'pacific': .9, }, 'gender' : { 'male': 1, 'female': 0.73, }, 'job' : { 'Alcohol Beverage Purchasing Specialist': .5, 'deputy sheriff': 1, 'sheriff': 1.5, 'Executive': 10 } } for person in generateCSV(1500, instruction, 100000, 10000): print (person) --- FILE SEPARATOR --- import csv def parseCSV(file_name): myList = [] with open(file_name, 'r') as file_o_data: #csv_data = csv.reader(file_o_data)#gives an iterable for row in csv.reader(file_o_data): myList.append(row) print(myList) return myList processed_data = {'M':[], 'F':[]} #gender:annual salary next(csv_data) for datapoint in csv_data: processed_data[datapoint[0]].append(datapoint[1]) print("the average male pay is", sum([int(float(i)) for i in processed_data['M']])/len(processed_data['M'])) """ Takes DATA, an iterable, and sorts the DATA by the COLUMN_SORT and returns it as a dictionary where each different type in COLUMN_GROUP has its relevant COLUMN_SORTs listed as a dictionary value. """ def sort_by(data, column_sort, column_group ): assert len(data)>1, "There is no data in the file!" header, data = data[0], data[1:] try: group_ind = header.index(column_group) sort_ind = header.index(column_sort) except ValueError: return "Error: the request is not represented by the data" sorted_data = {} for data_point in data: grouper = data_point[group_ind] sort_value = data_point[sort_ind] if grouper not in sorted_data: sorted_data[grouper] = [sort_value] else: sorted_data[grouper] += [sort_value] return sorted_data # test_data = [['money', 'race'], [-100, 'white'], [25000, 'asian'], [26000, 'asian'], [1000000, 'egyptian'], [1000, 'white']] # sorted_test_data = sort_by(test_data, "money", "race") """ filter_group takes in a dataset and column to filter by (creating something like a "race-filter", then takes in a name of the grouped variable (e.g. white)) filtergroup (test_data, race)(white) >>> [[-100, 'white'], [1000, 'white']] """ # filter_group = lambda dataset, col: lambda var: list(filter (lambda row: row[dataset[0].index(col)] == var, dataset)) # print(filter_group(test_data, "race")("asian")) def mean_data(sorted_data): return {grouper: (sum(values)/len(values)) for grouper, values in sorted_test_data.items() } # print(mean_data(test_data)) """ Filters a CSV into several Lists, currently supported lists are categories, gender (index 0), annualSalary(index 1), Employee Title (index 2), and race (index 3) """ def filterCSV(file_name): with open(file_name, 'r') as file_o_data: csv_data = csv.reader(file_o_data) #gives an iterable categories = [] gender = [] annualSalary = [] race = [] employeeTitle = [] #gender:annual salary for specData in next(csv_data): categories.append(specData) print(categories) for datapoint in csv_data: index = 0 for specificData in datapoint: #print(specificData) if ("gender" in categories and index == categories.index("gender")): gender.append(specificData) elif ("current annual salary" in categories and index == categories.index("current annual salary")): annualSalary.append(specificData) elif ("race" in categories and index == categories.index("race")): race.append(specificData) if ("employee position title" in categories or "position title" in categories or "job" in categories): if ("employee position title" in categories): if (index == categories.index("employee position title")): employeeTitle.append(specificData) elif ("position title" in categories): if (index == categories.index("position title")): employeeTitle.append(specificData) elif ("job" in categories): if (index == categories.index("job")): employeeTitle.append(specificData) #elif (index == categories.index("Employee Position Title") or index == categories.index("Position Title")): # employeeTitle.append(specificData) index += 1 return [gender, annualSalary, employeeTitle, race] #gender = 'M' or 'F' def genderSalaryAVG(arr, seekGender): gender = arr[0] annualSalary = arr[1] if ((seekGender != 'M' and seekGender != 'F') or gender == []): return totalAnn = 0 index = 0 count = 0 for data in gender: if (data.lower() == seekGender.lower() and annualSalary[index] != ''): totalAnn += float(annualSalary[index]) count += 1 index += 1 print("Average annual salary for gender: "+seekGender+", is "+(str(int(totalAnn/count)))) return (str(int(totalAnn/count))) def raceAVG(arr, seekRace): race = arr[3] annualSalary = arr[1] if (seekRace == [] or race == [] or annualSalary == []): return totalAnn = 0 index = 0 count = 0 for data in race: if (data.lower() == seekRace.lower() and annualSalary[index] != ''): totalAnn += float(annualSalary[index]) count += 1 index += 1 print("Average annual salary for race: "+seekRace+", is "+(str(int(totalAnn/count)))) return (str(int(totalAnn/count))) --- FILE SEPARATOR --- from enum import Enum class DataSections(Enum): RACE = 0 GENDER = 1 JOB = 2 SENIORITY = 3 SALARY = 4 --- FILE SEPARATOR --- from enum import Enum class Gender(Enum): MALE = 0 FEMALE = 1 --- FILE SEPARATOR --- from enum import Enum class Job(Enum): JANITOR = 0 CASHIER = 1 ENGINEER = 2 EXECUTIVE = 3 --- FILE SEPARATOR --- # Imports from numpy import loadtxt from keras.models import Sequential from keras.layers import Dense def Learn(): categories = 3 temp = 'generated.csv' dataset = loadtxt(temp, delimiter=',') inputs = dataset[:,0:categories] outputs = dataset[:,categories] model = Sequential() model.add(Dense(12, input_dim = categories, activation = 'relu')) model.add(Dense(8, activation = 'relu')) model.add(Dense(1, activation = 'sigmoid')) model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy']) model.fit(inputs, outputs, epochs = 150, batch_size = 10) # Evaluation _, accuracy = model.evaluate(inputs, outputs) print('Accuracy: %2.f' % (accuracy * 100)) def main(): print("Learn has been activited! It should do nothing.") main() --- FILE SEPARATOR --- from enum import Enum class Race(Enum): WHITE = 0 BLACK = 1 ASIAN = 2 LATINO = 3 INDIGENOUS = 4 PACIFIC = 5 --- FILE SEPARATOR --- from . import csvTasks from . import Gender # from . import Learn --- FILE SEPARATOR --- import Gender Gender = Gender.Gender import Job Job = Job.Job import Race Race = Race.Race import DataSections DataSections = DataSections.DataSections import disparitySearch import dataHandler --- FILE SEPARATOR --- import csv import random import math instruction = { 'race' : { 0: 1.5, # White 1: .9, # Black 2: 1.2, # Asian 3: 0.8, # Latino 4: .7, # Indigenous 5: .8, # Pacific }, 'gender' : { 0: 1, # Male 1: 0.83, # Female }, 'job' : { 0: .5, # Janitor 1: 1, # Cashier 2: 1.5, # Engineer 3: 10 # Executive }, 'year' : { 0: 0.8, # Janitor 1: 0.9, # Cashier 2: 0.95, # Engineer 3: 1 # Executive } } test_instruction = { 'race' : { 0: 1, # White 1: 1, # Black 2: 1, # Asian 3: 1, # Latino 4: 1, # Indigenous 5: 1, # Pacific }, 'gender' : { 0: 1, # Male 1: 1, # Female }, 'job' : { 0: 1, # Janitor 1: 1, # Cashier 2: 1, # Engineer 3: 1 # Executive }, 'year' : { 0: 1, # Janitor 1: 1.2, # Cashier 2: 2, # Engineer 3: 5 # Executive } } def parse(file): with open(file, 'r') as data: csvData = csv.reader(data) return csvData def generateCSV(sample_size, sample_instructions, global_mean, global_std): answer = [] for person in range(sample_size): person_attributes = [] weighed_mean = global_mean for discriminating_factor in list(sample_instructions): factor_types = sample_instructions[discriminating_factor] selected_attribute = random.choice(list(factor_types)) weighed_mean *= factor_types[selected_attribute] person_attributes += [selected_attribute] person_attributes += [math.floor(abs(int(100*random.gauss(weighed_mean, global_std))/100))] answer.append(person_attributes) createCSV(answer) return answer def createCSV(lists): with open('rlyunfairsampledata.csv', 'w', newline='') as f: thewriter = csv.writer(f) thewriter.writerow(['race', 'gender', 'job', 'salary']) for row in lists: thewriter.writerow(row) def main(): for person in generateCSV(1500, instruction, 100000, 10000): print(person) --- FILE SEPARATOR --- import csv import json import math import statistics import sys from scipy import stats import numpy as np import random sys.path.append('lib') import Gender Gender = Gender.Gender import Job Job = Job.Job import Race Race = Race.Race import DataSections DataSections = DataSections.DataSections def parse(file_name): data = [] with open(file_name, 'r') as file: for row in csv.reader(file): data.append(row) if "MONT" in file_name: mapfn = lambda data_entry: [random.randint(0, 5), int(data_entry[1] == "F"), random.randint(0, 3), random.randint(0,6), int(float(data_entry[2]))] new_data = [datapoint for datapoint in map(mapfn,data[1:])] return new_data[1:200] return data[1:] def splitCols(data): race = [] gender = [] job = [] year = [] salary = [] for i in data: race.append(int(i[0])) gender.append(int(i[1])) try: job.append(int(i[2])) except ValueError: job.append(i[2]) year.append(int(i[3])) salary.append(int(i[4])) return race, gender, job, year, salary def singleFilter(labels, values, criteria): """ singleFilter: filters a list based on the contents of another list Paramters: * labels: a list containing the objects you are searching for * values: a list containing the values you want to return at the index the label you are searching for is located * criteria: an object identical to the type stored in list that will be compared to objects inside labels Description: The function iterates through labels, looking for matches to criteria, When a match is found, the item located at the same index in values is added to a new list, which is then returned after the entire list has been iterated through. """ data = [] for i in range(len(labels)): if criteria == labels[i]: data.append(values[i]) return data def mean(lst): return sum(lst) / len(lst) def meanOf(labels, values, criteria): data = singleFilter(labels, values, criteria) return sum(data) / len(data) # Find standard deviation def sigma(lst): return statistics.stdev(lst) # Find standard deviation of criteria def sigmaOf(labels, values, criteria): data = singleFilter(labels, values, criteria) return statistics.stdev(data) # Returns the percentage of criteria in a list def ratio(lst, criteria): data = [x for x in lst if x == criteria] return len(data) / len(lst) def unique(lst): return list(dict.fromkeys(lst)) # Generate a dashboard summary def dashSum(ppl, job, salary): return len(ppl), 100*ratio(ppl, Gender.MALE.value), math.floor(mean(salary)), len(unique(job)) def findAllT(race, gender, job, year, salary): allT = {} allT['race'] = {} for r in range(len(Race)): for i in range(r + 1, len(Race)): raceListA = singleFilter(race, salary, r) raceListB = singleFilter(race, salary, i) allT['race'][(r + 1) * (i + 1)] = stats.ttest_ind(raceListA, raceListB) allT['gender'] = {} for g in range(len(Gender)): for i in range(g + 1, len(Gender)): genderListA = singleFilter(gender, salary, g) genderListB = singleFilter(gender, salary, i) allT['gender'][(g + 1) * (i + 1)] = stats.ttest_ind(genderListA, genderListB) allT['job'] = {} for j in range(len(Job)): for i in range(j + 1, len(Job)): print(i, j) jobListA = singleFilter(job, salary, j) jobListB = singleFilter(job, salary, i) print (jobListA, jobListB) print('endtest') allT['job'][(j + 1) * (i + 1)] = stats.ttest_ind(jobListA, jobListB) return allT def pt_score_calc(data1, data2): c1 = (sigma(data1)**2)/len(data1) c2 = (sigma(data2)**2)/len(data2) m1 = mean(data1) m2 = mean(data2) denom= math.sqrt(c1+c2) tVal = (m1-m2)/denom return tVal def search_disparity(data, col, first, second): data = parse(data) data = splitCols(data) data1 = singleFilter(data[col.value], data[DataSections.SALARY.value], first) if second > -1: data2 = singleFilter(data[col.value], data[DataSections.SALARY.value], second) else: data2 = data[DataSections.SALARY.value] return pt_score_calc(data1, data2) """Takes an interable and finds all possible, non duplicating possible pairs returns: a list of tuples """ def generate_combinations(iterable): result = [] avoid = [] for iteration in iterable: for iteration2 in iterable: if iteration2 not in avoid and iteration2 is not iteration: result += [(iteration, iteration2)] avoid += [iteration] return result """ def complete_data_analysis(datasetURL): else: results = {} #binary gender analysis results[(Gender.MALE, Gender.FEMALE)] = search_disparity('sampledata.csv', DataSections.GENDER, Gender.MALE.value, Gender.FEMALE.value) #race analysis for combination in generate_combinations(Race): results[combination] = search_disparity(datasetURL, DataSections.RACE, combination[0].value, combination[1].value ) #job analysis for combination in generate_combinations(Job): results[combination] = search_disparity(datasetURL, DataSections.JOB, combination[0].value, combination[1].value ) return results """ def main(): print("Begun handling of data with", sys.argv) argumentList = sys.argv[1:] data = parse(argumentList[0]) # ['race', 'gender', 'job', 'year', 'salary'] race, gender, job, year, salary = splitCols(data) count, ratio, meanTc, jobs = dashSum(gender, job, salary) maleSalary = singleFilter(gender, salary, Gender.MALE.value) maleSalary = sum(maleSalary) / len(maleSalary) femaleSalary = singleFilter(gender, salary, Gender.FEMALE.value) femaleSalary = sum(femaleSalary) / len(femaleSalary) print(maleSalary) print(femaleSalary) # t, p = stats.ttest_ind(maleSalary, femaleSalary) # print("t and p:", t, p) allT = findAllT(race, gender, job, year, salary) print(allT) p_val_g= abs(allT["gender"][2][1]) p_val_race= abs(min([allT['race'][key] for key in allT['race']][1])) print("p vals", p_val_g, p_val_race) # tVal = search_disparity(argumentList[0], DataSections.GENDER, Gender.MALE.value, Gender.FEMALE.value) # comprehensive_data_analysis = complete_data_analysis(argumentList[0]) recommendations = [] if (ratio < 45): recommendations.append("Your company favors women in the hiring process (by about "+(str2(2*abs(float(50 - ratio))))+"%)! Try to balance out your company!") elif (ratio > 55): recommendations.append("Your company favors men in the hiring process (by about "+(str(2*abs(float(50 - ratio))))+"%)! Try to balance out your company!") else: recommendations.append("Fantastic job in maintaining a balance of both men and women in your workplace! Keep it up.") if (jobs < 10): recommendations.append("Your company is lacking a diverse set of jobs. Try to compartamentalize your employees' duties more!") elif (jobs >= 10): recommendations.append("Great job maintaining a diverse set of jobs for your employees!") if (maleSalary - femaleSalary > 9000): recommendations.append("Your company has a bias when it comes to paying men over women. (A difference of $"+str(abs(int(femaleSalary - maleSalary)))+") Try to balance out your payrolls!") elif (femaleSalary - maleSalary > 9000): recommendations.append("Your company has a bias when it comes to paying women over men. (A difference of $"+str(abs(int(femaleSalary - maleSalary)))+") Try to balance out your payrolls!") else: recommendations.append("Great job maintaing balanced and equal payrolls for all of your employees!") dump = { "count": count, "ratio": ratio, "meanTc": meanTc, "jobs": jobs, "t_vals": allT, "p_val_g": p_val_g, "p_val_race": p_val_race, "feedback": recommendations, # "t value": tVal, # "permutations": comprehensive_data_analysis, #"p value": pVal, } with open('blobs/' + argumentList[0][7:-3] + "json", 'w') as file: json.dump(dump, file) print("[dataHandler] saved!") if len(sys.argv) > 1: main() --- FILE SEPARATOR --- import csv from datetime import datetime import json import requests from time import sleep # url = "https://www.fedsdatacenter.com/federal-pay-rates/output.php?sColumns=,,,,,,,,&iDisplayStart=0&iDisplayLength=100" url_prepend = "https://www.fedsdatacenter.com/federal-pay-rates/output.php?sColumns=,,,,,,,,&iDisplayStart=" url_append = "&iDisplayLength=100" payload = {} headers= {} today = datetime.today() date = str(today.year) + "-" + str(today.month) + \ "-" + str(today.day) + "-" + str(today.hour) + str(today.minute) table = open('FedsDataCenter-' + date + '.csv', 'w', newline='') writer = csv.writer(table, delimiter=',') writer.writerow(['name', 'grade', 'plan', 'salary', 'bonus', 'agency', 'location', 'occupation', 'fy']) start = 12300 end = 21083 pages = 21083 for i in range(start, end): print("Downloading page", i + 1, "of", pages,"..." ,end=" ") url = url_prepend + str(i * 100) + url_append response = requests.request("GET", url, headers=headers, data = payload) data = response.text.encode('utf8') parsed = json.loads(data) for item in parsed['aaData']: # print(item) writer.writerow(item) print("Done!") if (i + 1) % 1000 == 0: print("Sleeping for a half minute...") sleep(30) continue if (i + 1) % 100 == 0: print("Sleeping for a 5 seconds...") sleep(5) continue # print(response.text.encode('utf8'))
[ "/controllers/__init__.py", "/controllers/dashboard.py", "/controllers/dashboardItem.py", "/controllers/home.py", "/controllers/manage.py", "/controllers/moreInfoJobs.py", "/controllers/success.py", "/controllers/upload.py", "/csvgenerator.py", "/csvparser.py", "/lib/DataSections.py", "/lib/Gender.py", "/lib/Job.py", "/lib/Learn.py", "/lib/Race.py", "/lib/__init__.py", "/lib/completeDataAnalysis.py", "/lib/csvTasks.py", "/lib/dataHandler.py", "/payroll-datasets/scripts/FedsDataCenter.py" ]
00-00-00-11/News-Suggestions-Using-ML
from tqdm import tqdm import numpy as np import random, math, time from scipy.special import psi from preprocessing import preprocessing, maxItemNum from retrieve_articles import retrieve_articles docs, word2id, id2word = preprocessing() # The number of documents we'll be using to train the model. N = len(docs) # number of distinct terms M = len(word2id) # number of topics T = 10 # iteration times of variational inference, judgment of the convergence by calculating likelihood is omitted iterInference = 35 # iteration times of variational EM algorithm, judgment of the convergence by calculating likelihood is omitted iterEM = 50 # initial value of hyperparameter alpha alpha = 5 # sufficient statistic of alpha alphaSS = 0 # the topic-word distribution (beta in D. Blei's paper) # Passing the list [T,M] in as an argument for np.zeros creates a matrix of T-by-M zeros. varphi = np.zeros([T, M]) # topic-word count, this is a sufficient statistic to calculate varphi nzw = np.zeros([T, M]) # topic count, sum of nzw with w ranging from [0, M-1], for calculating varphi nz = np.zeros([T]) # inference parameter gamma gamma = np.zeros([N, T]) # inference parameter phi phi = np.zeros([maxItemNum(N, docs), T]) def initializeLdaModel(): for z in range(0, T): for w in range(0, M): nzw[z, w] += 1.0/M + random.random() nz[z] += nzw[z, w] updateVarphi() # update model parameters : varphi (the update of alpha is ommited) def updateVarphi(): for z in range(0, T): for w in range(0, M): if(nzw[z, w] > 0): varphi[z, w] = math.log(nzw[z, w]) - math.log(nz[z]) else: varphi[z, w] = -100 # update variational parameters : gamma and phi def variationalInference(docs, d, gamma, phi): phisum = 0 #Creates an numpy array containing a list of zeros with length equal to the number of topics. oldphi = np.zeros([T]) digamma_gamma = np.zeros([T]) for z in range(0, T): gamma[d][z] = alpha + docs[d].wordCount * 1.0 / T digamma_gamma[z] = psi(gamma[d][z]) for w in range(0, len(docs[d].itemIdList)): phi[w, z] = 1.0 / T for iteration in tqdm(range(0, iterInference)): for w in range(0, len(docs[d].itemIdList)): phisum = 0 for z in range(0, T): oldphi[z] = phi[w, z] phi[w, z] = digamma_gamma[z] + varphi[z, docs[d].itemIdList[w]] if z > 0: phisum = math.log(math.exp(phisum) + math.exp(phi[w, z])) else: phisum = phi[w, z] for z in range(0, T): phi[w, z] = math.exp(phi[w, z] - phisum) gamma[d][z] = gamma[d][z] + docs[d].itemCountList[w] * (phi[w, z] - oldphi[z]) digamma_gamma[z] = psi(gamma[d][z]) # initialization of the model parameter varphi, the update of alpha is ommited initializeLdaModel() print("Checkpoint") #Track Preprocessing Progress # variational EM Algorithm for iteration in tqdm(range(0, iterEM)): nz = np.zeros([T]) nzw = np.zeros([T, M]) alphaSS = 0 # EStep for d in tqdm(range(0, N)): variationalInference(docs, d, gamma, phi) gammaSum = 0 for z in range(0, T): gammaSum += gamma[d, z] alphaSS += psi(gamma[d, z]) alphaSS -= T * psi(gammaSum) for w in range(0, len(docs[d].itemIdList)): for z in range(0, T): nzw[z][docs[d].itemIdList[w]] += docs[d].itemCountList[w] * phi[w, z] nz[z] += docs[d].itemCountList[w] * phi[w, z] # MStep updateVarphi() # calculate the top 10 terms of each topic topicwords = [] maxTopicWordsNum = 10 for z in range(0, T): ids = varphi[z, :].argsort() topicword = [] for j in ids: topicword.insert(0, id2word[j]) topicwords.append([topicword[0 : min(10, len(topicword))],j]) counter = 1 for item in topicwords: print(f"Topic {counter}: {item[0]}") counter+=1 #print(phi) print('Complete.') #Write results to file. with open("results.txt","w+") as file: for index, item in enumerate(topicwords): file.write(f"Topic {index+1}: {item[0]} \n") for item in topicwords: file.write('\n'+' '.join(item[0])+'\n') query = ' '.join(item[0]) file.write(retrieve_articles(query)) time.sleep(5) --- FILE SEPARATOR --- from newsapi import NewsApiClient # Init def retrieve_articles_newsapi(): newsapi = NewsApiClient(api_key='2050df7a6a014501a04c5f42fa6eef54') # /v2/top-headlines top_headlines = newsapi.get_top_headlines(q='sector OR big OR corporate OR product OR investor OR pointed OR gavekal OR sovereign OR vincent OR louis', sources='bbc-news,the-verge', language='en') # /v2/everything all_articles = newsapi.get_everything(q='reality OR long OR central OR capital OR political OR dollars OR trading OR algorithmic OR banks OR released', sources='bbc-news, the-verge, the-wall-street-journal, the-washington-post, the-hill', domains='bbc.co.uk, techcrunch.com, ft.com, economist.com, wsj.com, thewashingtonpost.com', from_param='2019-07-18', to='2019-08-12', language='en', sort_by='relevancy') # /v2/sources sources = newsapi.get_sources() for article in all_articles['articles']: print(article) print('\n') retrieve_articles_newsapi() --- FILE SEPARATOR --- from tqdm import tqdm from split_into_sentences import split_into_sentences import numpy as np import codecs, jieba, re, random, math from scipy.special import psi # wordCount : the number of total words (not terms) # itemIdList : the list of distinct terms in the document # itemCountList : the list of number of the existence of corresponding terms class Document: def __init__(self, itemIdList, itemCountList, wordCount): self.itemIdList = itemIdList self.itemCountList = itemCountList self.wordCount = wordCount # Preprocessing - filter out stopwords, handle segmentation, and use the class Document to represent all documents in the text sample. def preprocessing(): # read in all stopwords to be filtered out. file = codecs.open('stopwords.dic','r','utf-8') stopwords = [line.strip() for line in file] #print(stopwords) file.close() # the document to read and produce topics from with open('sample.txt','r') as fh: all_lines = fh.readlines() str_all_lines = ' '.join(all_lines).replace('\n','') raw_documents = split_into_sentences(str_all_lines) # Check that sentence splitting has worked. # print(raw_documents) # Group 4 sentences as a document. documents = [] i=0 while i < len(raw_documents)-4: documents.append(raw_documents[i]+'\n'+raw_documents[i+1]+raw_documents[i+2]+'\n'+raw_documents[i+3]+'\n') i+=4 docs = [] word2id = {} id2word = {} currentWordId = 0 for document in documents: #word2Count is a dictionary, essentially a hashmap with the number of occurrences of each word in a sentence. word2Count = {} # Create generator objects for each word in the string, cuts on whole words and punctuation. segList = jieba.cut(document) for word in segList: word = word.lower().strip() # Get rid of items that are punctuation, numbers, or stopwords. if len(word) > 1 and not re.search('[0-9]', word) and word not in stopwords: if word not in word2id: word2id[word] = currentWordId id2word[currentWordId] = word currentWordId += 1 if word in word2Count: word2Count[word] += 1 else: word2Count[word] = 1 itemIdList = [] itemCountList = [] wordCount = 0 for word in word2Count.keys(): itemIdList.append(word2id[word]) itemCountList.append(word2Count[word]) wordCount += word2Count[word] docs.append(Document(itemIdList, itemCountList, wordCount)) return docs, word2id, id2word def maxItemNum(N, docs): num = 0 for d in range(0, N): if len(docs[d].itemIdList) > num: num = len(docs[d].itemIdList) return num --- FILE SEPARATOR --- # Dependencies import requests import time from pprint import pprint def retrieve_articles(query): url = "https://api.nytimes.com/svc/search/v2/articlesearch.json?" # Store a search term #query = "groups may white reform immigration federation american trump including nation" #fq = "money" # Search for articles published between a begin and end date begin_date = "20190101" end_date = "20190818" #filter query_url = f"{url}api-key=db1Vnm2AtlDDvNGJwu5izccRSafP0DGl&q={query}&begin_date={begin_date}&end_date={end_date}" # Empty list for articles articles_list = [] ignore_terms =["marriage","wedding","pregnancy",'adventure'] # loop through pages for more results. for page in range(0, 4): query_url = f"{url}api-key=db1Vnm2AtlDDvNGJwu5izccRSafP0DGl&q={query}&begin_date={begin_date}&end_date={end_date}" # create query with page number query_url = f"{query_url}&page={str(page)}" articles = requests.get(query_url).json() # Add a one second interval between queries to stay within API query limits time.sleep(1) # loop through the response and append each article to the list for article in articles["response"]["docs"]: x = f'{article["snippet"]} {article["web_url"]}' articles_list.append(x) #get rid of terms in articles irrelevant to what you are searching. for element in ignore_terms: if element in x: articles_list.pop() string_articles_list = '' for x,y in enumerate(articles_list): print(f'{x+1}. {y} \n') string_articles_list += f'{x+1}. {y} \n' return string_articles_list ''' # Retrieve articles articles = requests.get(query_url).json() articles_list = [article for article in articles["response"]["docs"]] #print(articles_list) for article in articles_list: print(f'{article["snippet"]} {article["web_url"]} \n') '''
[ "/keyword_extractor.py", "/news_api.py", "/preprocessing.py", "/retrieve_articles.py" ]
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
41