|
|
import copy
|
|
|
import json
|
|
|
import os
|
|
|
from typing import Any
|
|
|
|
|
|
import cv2
|
|
|
import matplotlib.pyplot as plt
|
|
|
import numpy as np
|
|
|
from PIL import Image
|
|
|
|
|
|
from lychsim.api import LychSim
|
|
|
from lychsim.utils.camera_projection_utils import project_3d_to_2d, get_bbox3d
|
|
|
|
|
|
from dataclasses import dataclass
|
|
|
from typing import List, Optional, Dict, Tuple
|
|
|
from scipy.spatial import cKDTree
|
|
|
from collections import defaultdict
|
|
|
|
|
|
|
|
|
|
|
|
class EasyDict(dict):
|
|
|
"""Convenience class that behaves like a dict but allows access with the attribute syntax."""
|
|
|
|
|
|
def __getattr__(self, name: str) -> Any:
|
|
|
try:
|
|
|
return self[name]
|
|
|
except KeyError:
|
|
|
raise AttributeError(name)
|
|
|
|
|
|
def __setattr__(self, name: str, value: Any) -> None:
|
|
|
self[name] = value
|
|
|
|
|
|
def __delattr__(self, name: str) -> None:
|
|
|
del self[name]
|
|
|
|
|
|
|
|
|
def init_sampling_params(state):
|
|
|
|
|
|
|
|
|
state.floor_objects = [
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_AmchairTreadle.SM_AmchairTreadle",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_ArmchairManager.SM_ArmchairManager",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_ColumnTable.SM_ColumnTable",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Decorative17.SM_Decorative17",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Komod.SM_Komod",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_KomodB.SM_KomodB",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Plant2.SM_Plant2",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Plant1.SM_Plant1",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_TeaTable.SM_TeaTable",
|
|
|
]
|
|
|
state.table_objects = [
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Ashtray.SM_Ashtray",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Award3.SM_Award3",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Award9.SM_Award9",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Book2.SM_Book2",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_CalendarDesk.SM_CalendarDesk",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Decorative10.SM_Decorative10",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Decorative37.SM_Decorative37",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_Fruits.SM_Fruits",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_PC.SM_PC",
|
|
|
"/Game/ManagerOffice/Meshes/Props/SM_MarkerMug.SM_MarkerMug",
|
|
|
]
|
|
|
|
|
|
mesh_extents = state.sim.get_mesh_extent(state.floor_objects + state.table_objects)[
|
|
|
"outputs"
|
|
|
]
|
|
|
state.mesh_extents = {
|
|
|
x["mesh_path"]: x["extent"] for x in mesh_extents if x["status"] == "ok"
|
|
|
}
|
|
|
|
|
|
for x in state.floor_objects:
|
|
|
if x not in state.mesh_extents:
|
|
|
print(f"Warning: Floor object {x} not found in the scene.")
|
|
|
for x in state.table_objects:
|
|
|
if x not in state.mesh_extents:
|
|
|
print(f"Warning: Table object {x} not found in the scene.")
|
|
|
|
|
|
state.floor_objects = [x for x in state.floor_objects if x in state.mesh_extents]
|
|
|
state.table_objects = [x for x in state.table_objects if x in state.mesh_extents]
|
|
|
|
|
|
state.table_height_margin_low, state.table_height_margin_high = (
|
|
|
-30.0,
|
|
|
50.0,
|
|
|
)
|
|
|
state.table_object_threshold = (
|
|
|
0.75
|
|
|
)
|
|
|
|
|
|
|
|
|
state.max_floor_sampling_trials = 20
|
|
|
|
|
|
state.floor_object_collision_iou_thr = 0.1
|
|
|
|
|
|
state.worst_floor_addition = -10
|
|
|
|
|
|
|
|
|
state.max_table_sampling_trials = 20
|
|
|
|
|
|
state.table_object_collision_iou_thr = 0.1
|
|
|
|
|
|
state.worst_table_addition = -10
|
|
|
|
|
|
|
|
|
def add_selection_as_floor(state, num_objects):
|
|
|
objects = state.sim.list_selected()
|
|
|
if objects["status"] != "ok":
|
|
|
raise RuntimeError(f"Failed to get selected objects. Response: {objects}")
|
|
|
|
|
|
new_floors = []
|
|
|
for obj in objects["outputs"]:
|
|
|
obj_id = obj["object_id"]
|
|
|
new_floors.append((obj_id, num_objects))
|
|
|
|
|
|
before_count = len(state.floors)
|
|
|
state.floors.update(new_floors)
|
|
|
|
|
|
print(
|
|
|
f"Added {len(new_floors)} object(s) to the floor list (prev={before_count} "
|
|
|
f"-> now={len(state.floors)}):\n{state.floors}"
|
|
|
)
|
|
|
|
|
|
|
|
|
def add_selection_as_table(state, num_objects):
|
|
|
objects = state.sim.list_selected()
|
|
|
if objects["status"] != "ok":
|
|
|
raise RuntimeError(f"Failed to get selected objects. Response: {objects}")
|
|
|
|
|
|
new_tables = []
|
|
|
for obj in objects["outputs"]:
|
|
|
obj_id = obj["object_id"]
|
|
|
new_tables.append((obj_id, num_objects))
|
|
|
|
|
|
before_count = len(state.tables)
|
|
|
state.tables.update(new_tables)
|
|
|
|
|
|
print(
|
|
|
f"Added {len(new_tables)} object(s) to the table list (prev={before_count} "
|
|
|
f"-> now={len(state.tables)}):\n{state.tables}"
|
|
|
)
|
|
|
|
|
|
|
|
|
def add_camera_location(state):
|
|
|
cam_id = state.cam_id
|
|
|
loc = state.sim.get_cam_loc(0)
|
|
|
|
|
|
before_count = len(state.cam_locations)
|
|
|
state.cam_locations.append(loc)
|
|
|
|
|
|
print(f"New location added (prev={before_count} -> {len(state.cam_locations)}):")
|
|
|
for loc in state.cam_locations:
|
|
|
print(f"\t{loc}")
|
|
|
|
|
|
|
|
|
def get_objects_on_aabb(state, table_aabb, objs_aabb):
|
|
|
table_aabb, objs_aabb = copy.deepcopy(table_aabb), copy.deepcopy(objs_aabb)
|
|
|
object_list = []
|
|
|
target_center, target_extent = table_aabb["center"], table_aabb["extent"]
|
|
|
|
|
|
|
|
|
state.table_height_margin_low, state.table_height_margin_high = -30.0, 50.0
|
|
|
target_center[2] = (
|
|
|
target_center[2]
|
|
|
+ target_extent[2]
|
|
|
+ (state.table_height_margin_low + state.table_height_margin_high) / 2.0
|
|
|
)
|
|
|
target_extent[2] = (
|
|
|
state.table_height_margin_high - state.table_height_margin_low
|
|
|
) / 2.0
|
|
|
|
|
|
tgt_min = np.array(target_center) - np.array(target_extent)
|
|
|
tgt_max = np.array(target_center) + np.array(target_extent)
|
|
|
|
|
|
for aabb in objs_aabb:
|
|
|
if aabb["status"] != "ok" or aabb["object_id"] == table_aabb["object_id"]:
|
|
|
continue
|
|
|
aabb["extent"] = [max(x, 1e-6) for x in aabb["extent"]]
|
|
|
obj_min = np.array(aabb["center"]) - np.array(aabb["extent"])
|
|
|
obj_max = np.array(aabb["center"]) + np.array(aabb["extent"])
|
|
|
|
|
|
inter_min = np.maximum(obj_min, tgt_min)
|
|
|
inter_max = np.minimum(obj_max, tgt_max)
|
|
|
inter_extent = np.maximum(0.0, inter_max - inter_min)
|
|
|
inter_vol = np.prod(inter_extent)
|
|
|
|
|
|
obj_vol = np.prod(2 * np.array(aabb["extent"]))
|
|
|
|
|
|
if inter_vol / obj_vol >= state.table_object_threshold:
|
|
|
object_list.append(aabb["object_id"])
|
|
|
|
|
|
return object_list
|
|
|
|
|
|
|
|
|
def clear_table_objects(state, table_id, objs_aabb):
|
|
|
objs_aabb = copy.deepcopy(objs_aabb)
|
|
|
table_aabb = [x for x in objs_aabb if x["object_id"] == table_id][0]
|
|
|
objects_on_table = get_objects_on_aabb(state, table_aabb, objs_aabb)
|
|
|
for obj_id in objects_on_table:
|
|
|
state.sim.del_obj(obj_id)
|
|
|
|
|
|
|
|
|
def collide(center1, extent1, center2, extent2, thr):
|
|
|
center1, extent1 = np.array(center1), np.array(extent1)
|
|
|
center2, extent2 = np.array(center2), np.array(extent2)
|
|
|
|
|
|
min1, max1 = center1 - extent1, center1 + extent1
|
|
|
min2, max2 = center2 - extent2, center2 + extent2
|
|
|
|
|
|
inter_min = np.maximum(min1, min2)
|
|
|
inter_max = np.minimum(max1, max2)
|
|
|
inter_extent = np.maximum(0.0, inter_max - inter_min)
|
|
|
inter_vol = np.prod(inter_extent)
|
|
|
|
|
|
vol1, vol2 = np.prod(2 * extent1), np.prod(2 * extent2)
|
|
|
union_vol = vol1 + vol2 - inter_vol
|
|
|
|
|
|
iou = inter_vol / union_vol if union_vol > 0 else 0.0
|
|
|
return iou >= thr
|
|
|
|
|
|
|
|
|
def compute_addition_from_collision(state, objs_aabb, sampling):
|
|
|
addition = len(sampling)
|
|
|
|
|
|
|
|
|
for obj1 in sampling:
|
|
|
for obj2 in sampling:
|
|
|
if obj1 >= obj2:
|
|
|
continue
|
|
|
if collide(
|
|
|
sampling[obj1]["center"],
|
|
|
sampling[obj1]["extent"],
|
|
|
sampling[obj2]["center"],
|
|
|
sampling[obj2]["extent"],
|
|
|
state.floor_object_collision_iou_thr,
|
|
|
):
|
|
|
return -1e5, []
|
|
|
|
|
|
tables = [x[0] for x in state.tables]
|
|
|
all_collided_objects = []
|
|
|
for obj in sampling:
|
|
|
collided_objects = [
|
|
|
x
|
|
|
for x in objs_aabb
|
|
|
if collide(
|
|
|
x["center"],
|
|
|
x["extent"],
|
|
|
sampling[obj]["center"],
|
|
|
sampling[obj]["extent"],
|
|
|
state.floor_object_collision_iou_thr,
|
|
|
)
|
|
|
]
|
|
|
for x in collided_objects:
|
|
|
if x["object_id"] in tables:
|
|
|
return -1e5, []
|
|
|
addition -= len(collided_objects)
|
|
|
all_collided_objects.extend([x["object_id"] for x in collided_objects])
|
|
|
return addition, all_collided_objects
|
|
|
|
|
|
|
|
|
def sample_floor_objects(state, floor_id, num_objects, objs_aabb):
|
|
|
floor_aabb = state.sim.get_obj_aabb(floor_id)["outputs"][0]
|
|
|
target_center, target_extent = np.array(floor_aabb["center"]), np.array(
|
|
|
floor_aabb["extent"]
|
|
|
)
|
|
|
target_extent[0] *= 0.9
|
|
|
target_extent[1] *= 0.9
|
|
|
|
|
|
best_sampling, best_addition, best_collisions = None, -1e6, None
|
|
|
for _ in range(state.max_floor_sampling_trials):
|
|
|
sampling = {}
|
|
|
sampled_object_ids = [
|
|
|
state.floor_objects[i]
|
|
|
for i in np.random.choice(
|
|
|
len(state.floor_objects), num_objects, replace=False
|
|
|
)
|
|
|
]
|
|
|
for soi in sampled_object_ids:
|
|
|
horizontal_location = target_center[:2] + np.random.uniform(
|
|
|
-target_extent[:2] * 0.5, target_extent[:2] * 0.5
|
|
|
)
|
|
|
vertical_location = target_center[2] + target_extent[2]
|
|
|
sampling[soi] = dict(
|
|
|
center=list(horizontal_location) + [vertical_location],
|
|
|
extent=state.mesh_extents[soi],
|
|
|
)
|
|
|
addition, collisions = compute_addition_from_collision(
|
|
|
state, objs_aabb, sampling
|
|
|
)
|
|
|
if addition > best_addition:
|
|
|
best_addition = addition
|
|
|
best_sampling = sampling
|
|
|
best_collisions = collisions
|
|
|
if best_addition < state.worst_floor_addition:
|
|
|
|
|
|
return None
|
|
|
|
|
|
for obj_id in best_collisions:
|
|
|
state.sim.del_obj(obj_id)
|
|
|
|
|
|
for obj_id in best_sampling:
|
|
|
loc = best_sampling[obj_id]["center"]
|
|
|
rot = [0.0, float(np.random.uniform(0, 360)), 0.0]
|
|
|
state.sim.add_obj(f"{obj_id.split('.')[-1]}_{random_uuid()}", obj_id, loc, rot)
|
|
|
|
|
|
|
|
|
|
|
|
def sample_table_objects(state, table_id, num_objects, objs_aabb):
|
|
|
table_aabb = state.sim.get_obj_aabb(table_id)["outputs"][0]
|
|
|
target_center, target_extent = np.array(table_aabb["center"]), np.array(
|
|
|
table_aabb["extent"]
|
|
|
)
|
|
|
target_extent[0] *= 0.9
|
|
|
target_extent[1] *= 0.9
|
|
|
|
|
|
best_sampling, best_addition, best_collisions = None, -1e6, None
|
|
|
for _ in range(state.max_table_sampling_trials):
|
|
|
sampling = {}
|
|
|
sampled_object_ids = [
|
|
|
state.table_objects[i]
|
|
|
for i in np.random.choice(
|
|
|
len(state.table_objects), num_objects, replace=False
|
|
|
)
|
|
|
]
|
|
|
for soi in sampled_object_ids:
|
|
|
horizontal_location = target_center[:2] + np.random.uniform(
|
|
|
-target_extent[:2] * 0.5, target_extent[:2] * 0.5
|
|
|
)
|
|
|
vertical_location = target_center[2] + target_extent[2]
|
|
|
sampling[soi] = dict(
|
|
|
center=list(horizontal_location) + [vertical_location],
|
|
|
extent=state.mesh_extents[soi],
|
|
|
)
|
|
|
addition, collisions = compute_addition_from_collision(
|
|
|
state, objs_aabb, sampling
|
|
|
)
|
|
|
if addition > best_addition:
|
|
|
best_addition = addition
|
|
|
best_sampling = sampling
|
|
|
best_collisions = collisions
|
|
|
if best_addition < state.worst_table_addition:
|
|
|
print(f"Best addition: {best_addition}, collisions: {best_collisions}")
|
|
|
return None
|
|
|
|
|
|
for obj_id in best_collisions:
|
|
|
state.sim.del_obj(obj_id)
|
|
|
print(f"del {obj_id}")
|
|
|
for obj_id in best_sampling:
|
|
|
loc = best_sampling[obj_id]["center"]
|
|
|
rot = [0.0, float(np.random.uniform(0, 360)), 0.0]
|
|
|
state.sim.add_obj(f"{obj_id.split('.')[-1]}_{random_uuid()}", obj_id, loc, rot)
|
|
|
print(f"add {obj_id}, {loc}, {rot}")
|
|
|
|
|
|
|
|
|
def sample_random_placement(state):
|
|
|
objs_aabb = state.sim.get_obj_aabb()["outputs"]
|
|
|
|
|
|
for floor_id, num_objects in state.floors:
|
|
|
sample_floor_objects(state, floor_id, num_objects, objs_aabb)
|
|
|
|
|
|
for table_id, num_objects in state.tables:
|
|
|
clear_table_objects(state, table_id, objs_aabb)
|
|
|
sample_table_objects(state, table_id, num_objects, objs_aabb)
|
|
|
|
|
|
|
|
|
def get_random_camera_rotations(state):
|
|
|
def sample_rotation():
|
|
|
pitch = float(np.random.uniform(state.min_pitch, state.max_pitch))
|
|
|
yaw = float(np.random.uniform(0, 360))
|
|
|
roll = 0.0
|
|
|
return [pitch, yaw, roll]
|
|
|
|
|
|
return [sample_rotation() for _ in range(state.random_viewpoints_per_location)]
|
|
|
|
|
|
def get_random_camera_rotations_fixed_yaw(state):
|
|
|
yaw_list = np.arange(0, 360, 60)
|
|
|
def sample_rotation(i):
|
|
|
pitch = 0.0
|
|
|
yaw = yaw_list[i]
|
|
|
roll = 0.0
|
|
|
return [pitch, yaw, roll]
|
|
|
return [sample_rotation(i) for i in range(len(yaw_list))]
|
|
|
|
|
|
def add_random_camera_height_offset(loc, state):
|
|
|
offset = float(
|
|
|
np.random.uniform(
|
|
|
-state.random_camera_height_offset, state.random_camera_height_offset
|
|
|
)
|
|
|
)
|
|
|
new_loc = loc.copy()
|
|
|
new_loc[2] += offset
|
|
|
return new_loc
|
|
|
|
|
|
|
|
|
def set_camera_location_and_rotation(scene_state, cam_loc_final, cam_rot):
|
|
|
cam_id = scene_state.cam_id
|
|
|
sim = scene_state.sim
|
|
|
|
|
|
sim.set_cam_loc(cam_id, cam_loc_final)
|
|
|
sim.set_cam_rot(cam_id, cam_rot)
|
|
|
|
|
|
|
|
|
def save_state(scene_state):
|
|
|
save_state = {}
|
|
|
for k in scene_state:
|
|
|
if isinstance(scene_state[k], LychSim):
|
|
|
save_state[k] = str(type(scene_state[k]))
|
|
|
elif isinstance(scene_state[k], set):
|
|
|
save_state[k] = list(scene_state[k])
|
|
|
else:
|
|
|
save_state[k] = scene_state[k]
|
|
|
|
|
|
save_path = os.path.join(scene_state.save_path, scene_state.scene_name)
|
|
|
os.makedirs(save_path, exist_ok=True)
|
|
|
|
|
|
with open(os.path.join(save_path, "state.json"), "w") as f:
|
|
|
json.dump(save_state, f, indent=4)
|
|
|
|
|
|
|
|
|
def capture_and_save(scene_state, view_name, camera_warmup_steps=10):
|
|
|
scene_output_path = os.path.join(
|
|
|
scene_state.save_path, scene_state.scene_name, view_name
|
|
|
)
|
|
|
os.makedirs(scene_output_path, exist_ok=True)
|
|
|
|
|
|
scene_state.sim.warmup_cam(scene_state.cam_id, camera_warmup_steps)
|
|
|
image = scene_state.sim.get_cam_lit(scene_state.cam_id)
|
|
|
image.save(os.path.join(scene_output_path, "lit.png"))
|
|
|
|
|
|
seg = scene_state.sim.get_cam_seg(scene_state.cam_id)
|
|
|
seg.save(os.path.join(scene_output_path, "seg.png"))
|
|
|
|
|
|
depth = scene_state.sim.get_cam_depth(scene_state.cam_id)
|
|
|
np.save(os.path.join(scene_output_path, "depth.npy"), depth)
|
|
|
|
|
|
normal = scene_state.sim.get_cam_normal(scene_state.cam_id)
|
|
|
normal.save(os.path.join(scene_output_path, "normal.png"))
|
|
|
|
|
|
annots_obj = scene_state.sim.get_obj_annots()
|
|
|
with open(os.path.join(scene_output_path, "object_annots.json"), "w") as f:
|
|
|
json.dump(annots_obj, f)
|
|
|
|
|
|
annots_cam = scene_state.sim.get_cam_annots(scene_state.cam_id)
|
|
|
fov = annots_cam["outputs"]["fov"]
|
|
|
w = annots_cam["outputs"]["width"]
|
|
|
h = annots_cam["outputs"]["height"]
|
|
|
fovx = np.deg2rad(fov)
|
|
|
fx = 0.5 * w / np.tan(0.5 * fovx)
|
|
|
fovy = 2.0 * np.arctan((h / float(w)) * np.tan(0.5 * fovx))
|
|
|
fy = 0.5 * h / np.tan(0.5 * fovy)
|
|
|
annots_cam["outputs"]["fxfycxcy"] = [fx, fy, w / 2.0, h / 2.0]
|
|
|
with open(os.path.join(scene_output_path, "camera_annots.json"), "w") as f:
|
|
|
json.dump(annots_cam, f)
|
|
|
|
|
|
scene_state.sim.clear_annot_comps()
|
|
|
|
|
|
def capture_and_save_filter(scene_state, view_name, camera_warmup_steps=10):
|
|
|
scene_output_path = os.path.join(
|
|
|
scene_state.save_path, scene_state.scene_name, view_name
|
|
|
)
|
|
|
os.makedirs(scene_output_path, exist_ok=True)
|
|
|
|
|
|
|
|
|
seg = scene_state.sim.get_cam_seg(scene_state.cam_id)
|
|
|
seg.save(os.path.join(scene_output_path, "seg.png"))
|
|
|
|
|
|
depth = scene_state.sim.get_cam_depth(scene_state.cam_id)
|
|
|
np.save(os.path.join(scene_output_path, "depth.npy"), depth)
|
|
|
|
|
|
annots_obj = scene_state.sim.get_obj_annots()
|
|
|
with open(os.path.join(scene_output_path, "object_annots.json"), "w") as f:
|
|
|
json.dump(annots_obj, f)
|
|
|
|
|
|
annots_cam = scene_state.sim.get_cam_annots(scene_state.cam_id)
|
|
|
fov = annots_cam["outputs"]["fov"]
|
|
|
w = annots_cam["outputs"]["width"]
|
|
|
h = annots_cam["outputs"]["height"]
|
|
|
fovx = np.deg2rad(fov)
|
|
|
fx = 0.5 * w / np.tan(0.5 * fovx)
|
|
|
fovy = 2.0 * np.arctan((h / float(w)) * np.tan(0.5 * fovx))
|
|
|
fy = 0.5 * h / np.tan(0.5 * fovy)
|
|
|
annots_cam["outputs"]["fxfycxcy"] = [fx, fy, w / 2.0, h / 2.0]
|
|
|
with open(os.path.join(scene_output_path, "camera_annots.json"), "w") as f:
|
|
|
json.dump(annots_cam, f)
|
|
|
|
|
|
scene_state.sim.clear_annot_comps()
|
|
|
|
|
|
|
|
|
def capture_and_save_image(scene_state, view_name, camera_warmup_steps=10):
|
|
|
scene_output_path = os.path.join(
|
|
|
scene_state.save_path, scene_state.scene_name, view_name
|
|
|
)
|
|
|
os.makedirs(scene_output_path, exist_ok=True)
|
|
|
|
|
|
scene_state.sim.warmup_cam(scene_state.cam_id, camera_warmup_steps)
|
|
|
image = scene_state.sim.get_cam_lit(scene_state.cam_id)
|
|
|
image.save(os.path.join(scene_output_path, "lit.png"))
|
|
|
|
|
|
|
|
|
def visualize_bbox(img, corners_2d, edges, color=(255, 255, 0, 255), thickness=2):
|
|
|
for i, j in edges:
|
|
|
pt1 = (int(corners_2d[i, 0]), int(corners_2d[i, 1]))
|
|
|
pt2 = (int(corners_2d[j, 0]), int(corners_2d[j, 1]))
|
|
|
cv2.line(img, pt1, pt2, color, thickness)
|
|
|
plt.imshow(img)
|
|
|
return img
|
|
|
|
|
|
|
|
|
def draw_bbox_3d(img, center, extent, c2w, fov):
|
|
|
if isinstance(img, Image.Image):
|
|
|
img = np.array(img)
|
|
|
vis_img = np.array(img).copy()
|
|
|
corners, edges = get_bbox3d(center=center, extent=extent)
|
|
|
pts2d, in_front = project_3d_to_2d(corners, c2w, fov, 1920, 1080)
|
|
|
vis_img = visualize_bbox(vis_img, pts2d, edges, color=(0, 255, 0, 255))
|
|
|
return Image.fromarray(vis_img)
|
|
|
|
|
|
|
|
|
def random_uuid(length=4):
|
|
|
return "".join(
|
|
|
np.random.choice(list("abcdefghijklmnopqrstuvwxyz0123456789"), size=length)
|
|
|
)
|
|
|
|
|
|
|
|
|
class CameraPositionEvaluator:
|
|
|
"""
|
|
|
相机位置质量评估器 - 判断深度图和分割掩码质量是否合格
|
|
|
|
|
|
评分权重:深度40% + 分割60%
|
|
|
|
|
|
分割要求(非常严格):
|
|
|
- ⚠️ 物体总数<6个,分割评分直接返回0,必定不合格
|
|
|
- ⚠️ 任何物体占比>50%,分割评分直接返回0,必定不合格
|
|
|
- 物体总数≥20个为满分,12-20个部分得分
|
|
|
- 小物体(占比<5%)需要≥6个
|
|
|
- 平均物体占比2-8%为理想
|
|
|
- 最大物体占比理想范围10%-30%
|
|
|
|
|
|
深度异常值检测策略(极其严格):
|
|
|
- 自动过滤常见的无效深度值(65504, 65535, 0等)
|
|
|
- ⚠️ 如果有效深度<90%(即无效值>10%),深度评分直接返回0,必定不合格
|
|
|
- 检测深度单一性:如果深度值过于集中(如一面墙),会被降分
|
|
|
- 智能判断:如果深度有足够变化(标准差/熵高,说明墙前有物品),则放宽集中度要求
|
|
|
- 使用中位数而非均值计算比值(更鲁棒,不受极端值影响)
|
|
|
- 最大深度/中位数比:检测单个极端异常值
|
|
|
- 离群值占比:检测多个异常大的深度值(室外空旷区域)
|
|
|
"""
|
|
|
|
|
|
def __init__(self, threshold: float = 0.6, background_color: Tuple[int, int, int] = (0, 0, 0)):
|
|
|
"""
|
|
|
参数:
|
|
|
threshold: 合格阈值,0-1之间,默认0.6
|
|
|
background_color: 背景颜色RGB值,默认为黑色(0, 0, 0)
|
|
|
"""
|
|
|
self.threshold = threshold
|
|
|
self.depth_weight = 0.4
|
|
|
self.seg_weight = 0.6
|
|
|
self.background_color = background_color
|
|
|
|
|
|
def evaluate(self, depth_map: np.ndarray, seg_mask: np.ndarray) -> Dict:
|
|
|
"""
|
|
|
评估相机位置是否合格
|
|
|
|
|
|
参数:
|
|
|
depth_map: 深度图 (H, W),单位米
|
|
|
seg_mask: 分割掩码 (H, W, 4),值为RGBA颜色,格式为(r, g, b, 255)
|
|
|
|
|
|
返回:
|
|
|
包含评估结果的字典:
|
|
|
{
|
|
|
'is_qualified': bool, # 是否合格
|
|
|
'score': float, # 总评分 0-1
|
|
|
'depth_score': float, # 深度评分
|
|
|
'seg_score': float, # 分割评分
|
|
|
'details': dict # 详细指标
|
|
|
}
|
|
|
"""
|
|
|
|
|
|
if len(seg_mask.shape) != 3 or seg_mask.shape[2] != 4:
|
|
|
raise ValueError(f"分割掩码形状应为 (H, W, 4),但得到 {seg_mask.shape}")
|
|
|
|
|
|
|
|
|
depth_metrics = self._evaluate_depth(depth_map)
|
|
|
depth_score = self._score_depth(depth_metrics)
|
|
|
|
|
|
|
|
|
seg_metrics = self._evaluate_segmentation(seg_mask)
|
|
|
seg_score = self._score_segmentation(seg_metrics)
|
|
|
|
|
|
|
|
|
total_score = (depth_score * self.depth_weight +
|
|
|
seg_score * self.seg_weight)
|
|
|
|
|
|
|
|
|
is_qualified = total_score >= self.threshold
|
|
|
|
|
|
return {
|
|
|
'is_qualified': is_qualified,
|
|
|
'score': round(total_score, 3),
|
|
|
'depth_score': round(depth_score, 3),
|
|
|
'seg_score': round(seg_score, 3),
|
|
|
'details': {
|
|
|
'depth': depth_metrics,
|
|
|
'segmentation': seg_metrics
|
|
|
}
|
|
|
}
|
|
|
|
|
|
def _evaluate_depth(self, depth_map: np.ndarray) -> Dict[str, float]:
|
|
|
"""评估深度图特征"""
|
|
|
|
|
|
INVALID_DEPTH_VALUES = [65504.0, 65535.0, 0.0]
|
|
|
|
|
|
|
|
|
valid_mask = depth_map > 0
|
|
|
for invalid_val in INVALID_DEPTH_VALUES:
|
|
|
valid_mask = valid_mask & (np.abs(depth_map - invalid_val) > 1.0)
|
|
|
|
|
|
valid_depth = depth_map[valid_mask]
|
|
|
|
|
|
if len(valid_depth) == 0:
|
|
|
return {
|
|
|
'coverage': 0.0,
|
|
|
'range_mean_ratio': 0.0,
|
|
|
'std_mean_ratio': 0.0,
|
|
|
'entropy': 0.0,
|
|
|
'max_depth': 0.0,
|
|
|
'far_pixel_ratio': 0.0,
|
|
|
'max_median_ratio': 0.0,
|
|
|
'outlier_ratio': 0.0,
|
|
|
'valid_depth_ratio': 0.0,
|
|
|
'depth_concentration': 0.0
|
|
|
}
|
|
|
|
|
|
|
|
|
valid_depth_ratio = len(valid_depth) / depth_map.size
|
|
|
|
|
|
|
|
|
coverage = valid_depth_ratio
|
|
|
|
|
|
|
|
|
depth_range = float(np.max(valid_depth) - np.min(valid_depth))
|
|
|
mean_depth = float(np.mean(valid_depth))
|
|
|
range_mean_ratio = depth_range / mean_depth if mean_depth > 0 else 0.0
|
|
|
|
|
|
|
|
|
std_depth = float(np.std(valid_depth))
|
|
|
std_mean_ratio = std_depth / mean_depth if mean_depth > 0 else 0.0
|
|
|
|
|
|
|
|
|
hist, _ = np.histogram(valid_depth, bins=20)
|
|
|
hist = hist / hist.sum()
|
|
|
hist = hist[hist > 0]
|
|
|
entropy = -np.sum(hist * np.log(hist))
|
|
|
|
|
|
|
|
|
max_depth = float(np.max(valid_depth))
|
|
|
|
|
|
|
|
|
median_depth = float(np.median(valid_depth))
|
|
|
|
|
|
|
|
|
far_threshold = median_depth * 5.0
|
|
|
far_pixels = valid_depth > far_threshold
|
|
|
far_pixel_ratio = float(np.sum(far_pixels) / len(valid_depth))
|
|
|
|
|
|
|
|
|
max_median_ratio = max_depth / median_depth if median_depth > 0 else 0.0
|
|
|
|
|
|
|
|
|
percentile_75 = float(np.percentile(valid_depth, 75))
|
|
|
outlier_threshold = percentile_75 * 10.0
|
|
|
outliers = valid_depth > outlier_threshold
|
|
|
outlier_ratio = float(np.sum(outliers) / len(valid_depth))
|
|
|
|
|
|
|
|
|
|
|
|
median_threshold_low = median_depth * 0.85
|
|
|
median_threshold_high = median_depth * 1.15
|
|
|
concentrated_pixels = (valid_depth >= median_threshold_low) & (valid_depth <= median_threshold_high)
|
|
|
depth_concentration = float(np.sum(concentrated_pixels) / len(valid_depth))
|
|
|
|
|
|
return {
|
|
|
'coverage': float(coverage),
|
|
|
'range_mean_ratio': float(range_mean_ratio),
|
|
|
'std_mean_ratio': float(std_mean_ratio),
|
|
|
'entropy': float(entropy),
|
|
|
'max_depth': float(max_depth),
|
|
|
'far_pixel_ratio': float(far_pixel_ratio),
|
|
|
'max_median_ratio': float(max_median_ratio),
|
|
|
'outlier_ratio': float(outlier_ratio),
|
|
|
'valid_depth_ratio': float(valid_depth_ratio),
|
|
|
'depth_concentration': float(depth_concentration)
|
|
|
}
|
|
|
|
|
|
def _evaluate_segmentation(self, seg_mask: np.ndarray) -> Dict[str, float]:
|
|
|
"""
|
|
|
评估分割掩码特征
|
|
|
|
|
|
参数:
|
|
|
seg_mask: 分割掩码 (H, W, 4),RGBA格式
|
|
|
"""
|
|
|
|
|
|
rgb_mask = seg_mask[:, :, :3]
|
|
|
|
|
|
|
|
|
h, w = rgb_mask.shape[:2]
|
|
|
total_pixels = h * w
|
|
|
rgb_flat = rgb_mask.reshape(-1, 3)
|
|
|
|
|
|
|
|
|
color_counts = defaultdict(int)
|
|
|
for pixel in rgb_flat:
|
|
|
color_tuple = tuple(pixel)
|
|
|
color_counts[color_tuple] += 1
|
|
|
|
|
|
|
|
|
if self.background_color in color_counts:
|
|
|
del color_counts[self.background_color]
|
|
|
|
|
|
|
|
|
num_objects = len(color_counts)
|
|
|
|
|
|
if num_objects == 0:
|
|
|
return {
|
|
|
'num_objects': 0,
|
|
|
'num_small_objects': 0,
|
|
|
'max_coverage': 0.0,
|
|
|
'min_coverage': 0.0,
|
|
|
'avg_coverage': 0.0,
|
|
|
'has_large_object': False,
|
|
|
'color_distribution': {}
|
|
|
}
|
|
|
|
|
|
|
|
|
coverages = []
|
|
|
small_object_threshold = 0.05
|
|
|
large_object_threshold = 0.5
|
|
|
num_small_objects = 0
|
|
|
has_large_object = False
|
|
|
color_distribution = {}
|
|
|
|
|
|
for color, count in color_counts.items():
|
|
|
coverage = count / total_pixels
|
|
|
coverages.append(coverage)
|
|
|
|
|
|
|
|
|
if coverage < small_object_threshold:
|
|
|
num_small_objects += 1
|
|
|
|
|
|
|
|
|
if coverage > large_object_threshold:
|
|
|
has_large_object = True
|
|
|
|
|
|
|
|
|
color_str = f"RGB{color}"
|
|
|
color_distribution[color_str] = round(coverage, 4)
|
|
|
|
|
|
|
|
|
color_distribution = dict(sorted(color_distribution.items(),
|
|
|
key=lambda x: x[1], reverse=True))
|
|
|
|
|
|
return {
|
|
|
'num_objects': float(num_objects),
|
|
|
'num_small_objects': float(num_small_objects),
|
|
|
'max_coverage': float(max(coverages)) if coverages else 0.0,
|
|
|
'min_coverage': float(min(coverages)) if coverages else 0.0,
|
|
|
'avg_coverage': float(np.mean(coverages)) if coverages else 0.0,
|
|
|
'has_large_object': has_large_object,
|
|
|
'color_distribution': color_distribution
|
|
|
}
|
|
|
|
|
|
def _score_segmentation(self, metrics: Dict[str, float]) -> float:
|
|
|
"""计算分割评分 (0-1) - 严格要求物体数量、小物体数量,并惩罚大面积物体"""
|
|
|
num_objects = metrics['num_objects']
|
|
|
num_small_objects = metrics['num_small_objects']
|
|
|
max_coverage = metrics['max_coverage']
|
|
|
|
|
|
|
|
|
if num_objects < 6:
|
|
|
return 0.0
|
|
|
|
|
|
|
|
|
if max_coverage > 0.5:
|
|
|
return 0.0
|
|
|
|
|
|
score = 0.0
|
|
|
|
|
|
|
|
|
if num_objects >= 20:
|
|
|
score += 0.3
|
|
|
elif num_objects >= 12:
|
|
|
|
|
|
score += ((num_objects - 12) / 8) * 0.3
|
|
|
else:
|
|
|
|
|
|
score += ((num_objects - 6) / 6) * 0.15
|
|
|
|
|
|
|
|
|
if num_small_objects >= 6:
|
|
|
score += 0.3
|
|
|
else:
|
|
|
score += (num_small_objects / 6) * 0.3
|
|
|
|
|
|
|
|
|
|
|
|
if max_coverage <= 0.1:
|
|
|
|
|
|
score += max_coverage / 0.1 * 0.1
|
|
|
elif max_coverage <= 0.3:
|
|
|
|
|
|
score += 0.2
|
|
|
else:
|
|
|
|
|
|
score += (0.5 - max_coverage) / 0.2 * 0.2
|
|
|
|
|
|
|
|
|
min_coverage = metrics['min_coverage']
|
|
|
if min_coverage >= 0.003:
|
|
|
score += 0.1
|
|
|
else:
|
|
|
score += min_coverage / 0.003 * 0.1
|
|
|
|
|
|
|
|
|
avg_coverage = metrics['avg_coverage']
|
|
|
if 0.02 <= avg_coverage <= 0.08:
|
|
|
score += 0.1
|
|
|
elif avg_coverage < 0.02:
|
|
|
score += avg_coverage / 0.02 * 0.1
|
|
|
else:
|
|
|
score += max(0, (1 - (avg_coverage - 0.08) / 0.12)) * 0.1
|
|
|
|
|
|
return min(score, 1.0)
|
|
|
|
|
|
def _score_depth(self, metrics: Dict[str, float]) -> float:
|
|
|
"""计算深度评分 (0-1) - 严格惩罚无效值和单一深度场景"""
|
|
|
|
|
|
|
|
|
valid_depth_ratio = metrics['valid_depth_ratio']
|
|
|
if valid_depth_ratio < 0.9:
|
|
|
|
|
|
return 0.0
|
|
|
|
|
|
score = 0.0
|
|
|
|
|
|
|
|
|
if valid_depth_ratio >= 0.98:
|
|
|
score += 0.15
|
|
|
else:
|
|
|
|
|
|
score += ((valid_depth_ratio - 0.9) / 0.08) * 0.15
|
|
|
|
|
|
|
|
|
range_mean_ratio = metrics['range_mean_ratio']
|
|
|
if 0.5 <= range_mean_ratio <= 2.0:
|
|
|
score += 0.1
|
|
|
elif range_mean_ratio < 0.5:
|
|
|
score += range_mean_ratio / 0.5 * 0.1
|
|
|
else:
|
|
|
score += max(0, (1 - (range_mean_ratio - 2.0) / 3.0)) * 0.1
|
|
|
|
|
|
|
|
|
std_mean_ratio = metrics['std_mean_ratio']
|
|
|
if 0.2 <= std_mean_ratio <= 0.6:
|
|
|
score += 0.1
|
|
|
elif std_mean_ratio < 0.2:
|
|
|
score += std_mean_ratio / 0.2 * 0.1
|
|
|
else:
|
|
|
score += max(0, (1 - (std_mean_ratio - 0.6) / 0.6)) * 0.1
|
|
|
|
|
|
|
|
|
entropy = metrics['entropy']
|
|
|
max_entropy = 3.0
|
|
|
score += min(entropy / max_entropy, 1.0) * 0.1
|
|
|
|
|
|
|
|
|
depth_concentration = metrics['depth_concentration']
|
|
|
|
|
|
|
|
|
has_variation = (std_mean_ratio >= 0.25) or (entropy >= 2.0)
|
|
|
|
|
|
if has_variation:
|
|
|
|
|
|
if depth_concentration <= 0.6:
|
|
|
score += 0.15
|
|
|
elif depth_concentration <= 0.8:
|
|
|
score += (0.8 - depth_concentration) / 0.2 * 0.15
|
|
|
else:
|
|
|
score += 0.05
|
|
|
else:
|
|
|
|
|
|
if depth_concentration <= 0.5:
|
|
|
score += 0.15
|
|
|
elif depth_concentration <= 0.7:
|
|
|
score += (0.7 - depth_concentration) / 0.2 * 0.15
|
|
|
else:
|
|
|
|
|
|
score += 0.0
|
|
|
|
|
|
|
|
|
max_median_ratio = metrics['max_median_ratio']
|
|
|
if max_median_ratio <= 5.0:
|
|
|
score += 0.2
|
|
|
elif max_median_ratio <= 10.0:
|
|
|
score += (10.0 - max_median_ratio) / 5.0 * 0.2
|
|
|
else:
|
|
|
penalty = max(0, 1 - (max_median_ratio - 10.0) / 50.0)
|
|
|
score += penalty * 0.2
|
|
|
|
|
|
|
|
|
outlier_ratio = metrics['outlier_ratio']
|
|
|
if outlier_ratio <= 0.01:
|
|
|
score += 0.2
|
|
|
elif outlier_ratio <= 0.05:
|
|
|
score += (0.05 - outlier_ratio) / 0.04 * 0.2
|
|
|
else:
|
|
|
penalty = max(0, 1 - (outlier_ratio - 0.05) / 0.15)
|
|
|
score += penalty * 0.2
|
|
|
|
|
|
return min(score, 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class CameraConfig:
|
|
|
"""相机配置类,统一管理相机参数"""
|
|
|
width: float = 40.0
|
|
|
height: float = 40.0
|
|
|
depth: float = 40.0
|
|
|
|
|
|
@property
|
|
|
def size(self) -> List[float]:
|
|
|
return [self.width, self.height, self.depth]
|
|
|
|
|
|
@property
|
|
|
def half_extents(self) -> List[float]:
|
|
|
return [self.width/2, self.height/2, self.depth/2]
|
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_CAMERA = CameraConfig()
|
|
|
|
|
|
|
|
|
def compute_aabb_from_vertices(vertices):
|
|
|
"""
|
|
|
从顶点计算AABB(轴对齐包围盒)的中心和半长
|
|
|
|
|
|
Args:
|
|
|
vertices: (N, 3) array, 物体的顶点
|
|
|
|
|
|
Returns:
|
|
|
dict: {
|
|
|
'center': (3,) array,
|
|
|
'extent': (3,) array (半长),
|
|
|
'radius': float (包围球半径,用于快速排除)
|
|
|
}
|
|
|
"""
|
|
|
min_point = vertices.min(axis=0)
|
|
|
max_point = vertices.max(axis=0)
|
|
|
|
|
|
center = (min_point + max_point) / 2
|
|
|
extent = (max_point - min_point) / 2
|
|
|
|
|
|
|
|
|
radius = np.linalg.norm(extent)
|
|
|
|
|
|
return {
|
|
|
'center': center,
|
|
|
'extent': extent,
|
|
|
'radius': radius,
|
|
|
'min': min_point,
|
|
|
'max': max_point
|
|
|
}
|
|
|
|
|
|
|
|
|
def estimate_aabb_distance(aabb1_info, aabb2_info):
|
|
|
"""
|
|
|
估算两个AABB之间的距离
|
|
|
使用包围球距离减去半径作为下界估计
|
|
|
|
|
|
Args:
|
|
|
aabb1_info, aabb2_info: AABB信息字典
|
|
|
|
|
|
Returns:
|
|
|
float: 估算的最小距离(可能为负表示重叠)
|
|
|
"""
|
|
|
center_dist = np.linalg.norm(aabb2_info['center'] - aabb1_info['center'])
|
|
|
return center_dist - (aabb1_info['radius'] + aabb2_info['radius'])
|
|
|
|
|
|
|
|
|
def create_camera_aabb_vertices(position, camera_config=None):
|
|
|
"""
|
|
|
创建相机的AABB顶点
|
|
|
|
|
|
Args:
|
|
|
position: [x, y, z] 相机中心位置
|
|
|
camera_config: CameraConfig实例,None则使用默认配置
|
|
|
|
|
|
Returns:
|
|
|
(8, 3) array: 8个顶点坐标
|
|
|
"""
|
|
|
if camera_config is None:
|
|
|
camera_config = DEFAULT_CAMERA
|
|
|
|
|
|
x, y, z = position
|
|
|
w, h, d = camera_config.half_extents
|
|
|
|
|
|
|
|
|
vertices = np.array([
|
|
|
[x - w, y - h, z - d],
|
|
|
[x + w, y - h, z - d],
|
|
|
[x + w, y + h, z - d],
|
|
|
[x - w, y + h, z - d],
|
|
|
[x - w, y - h, z + d],
|
|
|
[x + w, y - h, z + d],
|
|
|
[x + w, y + h, z + d],
|
|
|
[x - w, y + h, z + d],
|
|
|
])
|
|
|
|
|
|
return vertices
|
|
|
|
|
|
|
|
|
def check_camera_collision(camera_position,
|
|
|
object_vertices_list,
|
|
|
camera_config=None,
|
|
|
check_nearest=10,
|
|
|
collision_threshold=0.0,
|
|
|
use_improved_search=True):
|
|
|
"""
|
|
|
检查相机位置是否与场景中的物体发生碰撞
|
|
|
|
|
|
Args:
|
|
|
camera_position: [x, y, z] 相机位置
|
|
|
object_vertices_list: list of (N, 3) arrays,场景中所有物体的顶点
|
|
|
camera_config: CameraConfig实例,None则使用默认配置
|
|
|
check_nearest: 检查最近的几个物体
|
|
|
collision_threshold: IoU碰撞阈值,默认0(任何重叠都算碰撞)
|
|
|
use_improved_search: 是否使用改进的搜索方法
|
|
|
|
|
|
Returns:
|
|
|
dict: {
|
|
|
'collision': bool,
|
|
|
'colliding_indices': list,
|
|
|
'collision_ious': list, # 每个碰撞的IoU值
|
|
|
'nearest_indices': list,
|
|
|
'nearest_distances': list,
|
|
|
'checked_count': int
|
|
|
}
|
|
|
"""
|
|
|
if camera_config is None:
|
|
|
camera_config = DEFAULT_CAMERA
|
|
|
|
|
|
|
|
|
camera_center = np.array(camera_position)
|
|
|
camera_extent = np.array(camera_config.half_extents)
|
|
|
|
|
|
|
|
|
object_aabb_infos = [compute_aabb_from_vertices(verts)
|
|
|
for verts in object_vertices_list]
|
|
|
|
|
|
if use_improved_search:
|
|
|
|
|
|
camera_aabb_info = {
|
|
|
'center': camera_center,
|
|
|
'extent': camera_extent,
|
|
|
'radius': np.linalg.norm(camera_extent)
|
|
|
}
|
|
|
|
|
|
distances = []
|
|
|
for i, aabb_info in enumerate(object_aabb_infos):
|
|
|
|
|
|
dist = estimate_aabb_distance(camera_aabb_info, aabb_info)
|
|
|
distances.append((dist, i))
|
|
|
|
|
|
|
|
|
distances.sort(key=lambda x: x[0])
|
|
|
|
|
|
|
|
|
indices_to_check = [idx for _, idx in distances[:check_nearest]]
|
|
|
nearest_distances = [dist for dist, _ in distances[:check_nearest]]
|
|
|
else:
|
|
|
|
|
|
object_centers = np.array([info['center'] for info in object_aabb_infos])
|
|
|
kdtree = cKDTree(object_centers)
|
|
|
center_distances, indices = kdtree.query(camera_position,
|
|
|
k=min(check_nearest, len(object_centers)))
|
|
|
|
|
|
if not isinstance(center_distances, np.ndarray):
|
|
|
center_distances = np.array([center_distances])
|
|
|
indices = np.array([indices])
|
|
|
|
|
|
indices_to_check = indices
|
|
|
nearest_distances = center_distances.tolist()
|
|
|
|
|
|
|
|
|
colliding_indices = []
|
|
|
collision_ious = []
|
|
|
checked_count = 0
|
|
|
|
|
|
for idx in indices_to_check:
|
|
|
if not 0 <= idx < len(object_aabb_infos):
|
|
|
continue
|
|
|
|
|
|
checked_count += 1
|
|
|
|
|
|
|
|
|
obj_info = object_aabb_infos[idx]
|
|
|
|
|
|
|
|
|
iou = compute_iou(camera_center, camera_extent,
|
|
|
obj_info['center'], obj_info['extent'])
|
|
|
|
|
|
if collide(camera_center, camera_extent,
|
|
|
obj_info['center'], obj_info['extent'],
|
|
|
collision_threshold):
|
|
|
colliding_indices.append(int(idx))
|
|
|
collision_ious.append(float(iou))
|
|
|
|
|
|
return {
|
|
|
'collision': len(colliding_indices) > 0,
|
|
|
'colliding_indices': colliding_indices,
|
|
|
'collision_ious': collision_ious,
|
|
|
'nearest_indices': [int(idx) for idx in indices_to_check],
|
|
|
'nearest_distances': nearest_distances,
|
|
|
'checked_count': checked_count
|
|
|
}
|
|
|
|
|
|
|
|
|
def compute_iou(center1, extent1, center2, extent2):
|
|
|
"""
|
|
|
计算两个AABB的IoU值
|
|
|
|
|
|
Args:
|
|
|
center1, extent1: 第一个AABB的中心和半长
|
|
|
center2, extent2: 第二个AABB的中心和半长
|
|
|
|
|
|
Returns:
|
|
|
float: IoU值(0到1之间)
|
|
|
"""
|
|
|
center1, extent1 = np.array(center1), np.array(extent1)
|
|
|
center2, extent2 = np.array(center2), np.array(extent2)
|
|
|
|
|
|
min1, max1 = center1 - extent1, center1 + extent1
|
|
|
min2, max2 = center2 - extent2, center2 + extent2
|
|
|
|
|
|
inter_min = np.maximum(min1, min2)
|
|
|
inter_max = np.minimum(max1, max2)
|
|
|
inter_extent = np.maximum(0.0, inter_max - inter_min)
|
|
|
inter_vol = np.prod(inter_extent)
|
|
|
|
|
|
vol1, vol2 = np.prod(2 * extent1), np.prod(2 * extent2)
|
|
|
union_vol = vol1 + vol2 - inter_vol
|
|
|
|
|
|
iou = inter_vol / union_vol if union_vol > 0 else 0.0
|
|
|
return iou
|
|
|
|
|
|
|
|
|
def compute_scene_bounds(object_vertices_list,
|
|
|
margin=30,
|
|
|
trim_percent=10,
|
|
|
camera_config=None):
|
|
|
"""
|
|
|
计算包含所有物体的边界框,去掉极值
|
|
|
|
|
|
Args:
|
|
|
object_vertices_list: list of (N, 3) arrays
|
|
|
margin: 边界内缩距离(cm)
|
|
|
trim_percent: 去掉的极值百分比(0-50)
|
|
|
camera_config: CameraConfig实例,用于确保边界足够大
|
|
|
|
|
|
Returns:
|
|
|
dict: 边界信息
|
|
|
"""
|
|
|
if camera_config is None:
|
|
|
camera_config = DEFAULT_CAMERA
|
|
|
|
|
|
|
|
|
all_vertices = np.vstack(object_vertices_list)
|
|
|
total_vertices = len(all_vertices)
|
|
|
|
|
|
|
|
|
lower_percentile = trim_percent
|
|
|
upper_percentile = 100 - trim_percent
|
|
|
|
|
|
|
|
|
x_min = np.percentile(all_vertices[:, 0], lower_percentile)
|
|
|
x_max = np.percentile(all_vertices[:, 0], upper_percentile)
|
|
|
y_min = np.percentile(all_vertices[:, 1], lower_percentile)
|
|
|
y_max = np.percentile(all_vertices[:, 1], upper_percentile)
|
|
|
z_min = np.percentile(all_vertices[:, 2], lower_percentile)
|
|
|
z_max = np.percentile(all_vertices[:, 2], upper_percentile)
|
|
|
|
|
|
|
|
|
min_width = camera_config.width + 2 * margin
|
|
|
min_height = camera_config.height + 2 * margin
|
|
|
min_depth = camera_config.depth + 2 * margin
|
|
|
|
|
|
|
|
|
x_min += margin
|
|
|
x_max -= margin
|
|
|
y_min += margin
|
|
|
y_max -= margin
|
|
|
z_min += margin
|
|
|
z_max -= margin
|
|
|
|
|
|
|
|
|
if x_max - x_min < min_width:
|
|
|
center_x = (x_min + x_max) / 2
|
|
|
x_min = center_x - min_width / 2
|
|
|
x_max = center_x + min_width / 2
|
|
|
|
|
|
if y_max - y_min < min_height:
|
|
|
center_y = (y_min + y_max) / 2
|
|
|
y_min = center_y - min_height / 2
|
|
|
y_max = center_y + min_height / 2
|
|
|
|
|
|
if z_max - z_min < min_depth:
|
|
|
center_z = (z_min + z_max) / 2
|
|
|
z_min = center_z - min_depth / 2
|
|
|
z_max = center_z + min_depth / 2
|
|
|
|
|
|
|
|
|
center = [(x_min + x_max) / 2, (y_min + y_max) / 2, (z_min + z_max) / 2]
|
|
|
size = [x_max - x_min, y_max - y_min, z_max - z_min]
|
|
|
|
|
|
|
|
|
trimmed_mask = (
|
|
|
(all_vertices[:, 0] < x_min - margin) | (all_vertices[:, 0] > x_max + margin) |
|
|
|
(all_vertices[:, 1] < y_min - margin) | (all_vertices[:, 1] > y_max + margin) |
|
|
|
(all_vertices[:, 2] < z_min - margin) | (all_vertices[:, 2] > z_max + margin)
|
|
|
)
|
|
|
trimmed_count = trimmed_mask.sum()
|
|
|
|
|
|
return {
|
|
|
'x_min': x_min,
|
|
|
'x_max': x_max,
|
|
|
'y_min': y_min,
|
|
|
'y_max': y_max,
|
|
|
'z_min': z_min,
|
|
|
'z_max': z_max,
|
|
|
'center': center,
|
|
|
'size': size,
|
|
|
'trimmed_vertices_count': int(trimmed_count),
|
|
|
'total_vertices': total_vertices,
|
|
|
'trim_percent': trim_percent,
|
|
|
'camera_config': camera_config
|
|
|
}
|
|
|
|
|
|
|
|
|
def sample_positions_fixed_heights(bounds, num_samples_per_height=5, num_heights=3, min_distance=None):
|
|
|
"""
|
|
|
在固定高度上采样相机位置(XY平面泊松圆盘采样)
|
|
|
|
|
|
Args:
|
|
|
bounds: dict, 场景边界信息
|
|
|
num_samples_per_height: 每个高度层采样多少个位置
|
|
|
num_heights: 使用几个高度层(默认3个)
|
|
|
min_distance: XY平面上点之间的最小距离(cm),None则自动计算
|
|
|
|
|
|
Returns:
|
|
|
list of [x, y, z]: 所有采样位置(纯Python float类型)
|
|
|
"""
|
|
|
|
|
|
z_min = bounds['z_min']
|
|
|
z_max = bounds['z_max']
|
|
|
z_levels = np.linspace(z_min, z_max, num_heights+2)
|
|
|
selected_heights = z_levels[1:-1]
|
|
|
|
|
|
print(f"Z轴范围: [{z_min:.1f}, {z_max:.1f}] cm")
|
|
|
print(f"选择的{num_heights}个高度: {[f'{z:.1f}' for z in selected_heights]}")
|
|
|
|
|
|
|
|
|
if min_distance is None:
|
|
|
area = (bounds['x_max'] - bounds['x_min']) * (bounds['y_max'] - bounds['y_min'])
|
|
|
avg_area_per_sample = area / num_samples_per_height
|
|
|
min_distance = np.sqrt(avg_area_per_sample) * 0.8
|
|
|
print(f"自动计算最小距离: {min_distance:.1f} cm")
|
|
|
|
|
|
|
|
|
all_positions = []
|
|
|
|
|
|
for i, height in enumerate(selected_heights):
|
|
|
print(f"采样高度层 {i+1}/{num_heights}: Z={height:.1f} cm...", end=" ")
|
|
|
xy_positions = sample_xy_poisson(
|
|
|
bounds,
|
|
|
float(height),
|
|
|
num_samples_per_height,
|
|
|
min_distance
|
|
|
)
|
|
|
all_positions.extend(xy_positions)
|
|
|
print(f"完成 ({len(xy_positions)} 个点)")
|
|
|
|
|
|
print(f"总采样点数: {len(all_positions)}")
|
|
|
|
|
|
return all_positions
|
|
|
|
|
|
|
|
|
def sample_xy_poisson(bounds, z_height, num_samples, min_distance):
|
|
|
"""
|
|
|
在固定Z高度的XY平面上泊松圆盘采样
|
|
|
|
|
|
Args:
|
|
|
bounds: dict, 场景边界
|
|
|
z_height: 固定的Z高度
|
|
|
num_samples: 目标采样数量
|
|
|
min_distance: XY平面上点之间的最小距离(cm)
|
|
|
|
|
|
Returns:
|
|
|
list of [x, y, z]: 采样位置(纯Python float类型)
|
|
|
"""
|
|
|
positions = []
|
|
|
max_attempts = num_samples * 100
|
|
|
attempts = 0
|
|
|
|
|
|
|
|
|
first_pos = [
|
|
|
float(np.random.uniform(bounds['x_min'], bounds['x_max'])),
|
|
|
float(np.random.uniform(bounds['y_min'], bounds['y_max'])),
|
|
|
float(z_height)
|
|
|
]
|
|
|
positions.append(first_pos)
|
|
|
|
|
|
|
|
|
active_list = [0]
|
|
|
|
|
|
while len(positions) < num_samples and attempts < max_attempts:
|
|
|
attempts += 1
|
|
|
|
|
|
if len(active_list) == 0:
|
|
|
break
|
|
|
|
|
|
|
|
|
idx = np.random.randint(0, len(active_list))
|
|
|
active_idx = active_list[idx]
|
|
|
base_pos = np.array(positions[active_idx][:2])
|
|
|
|
|
|
|
|
|
found = False
|
|
|
for _ in range(30):
|
|
|
|
|
|
angle = np.random.uniform(0, 2 * np.pi)
|
|
|
distance = np.random.uniform(min_distance, 2 * min_distance)
|
|
|
|
|
|
|
|
|
new_xy = base_pos + distance * np.array([np.cos(angle), np.sin(angle)])
|
|
|
new_pos = [float(new_xy[0]), float(new_xy[1]), float(z_height)]
|
|
|
|
|
|
|
|
|
if not (bounds['x_min'] <= new_pos[0] <= bounds['x_max'] and
|
|
|
bounds['y_min'] <= new_pos[1] <= bounds['y_max']):
|
|
|
continue
|
|
|
|
|
|
|
|
|
if len(positions) > 0:
|
|
|
existing_xy = np.array([p[:2] for p in positions])
|
|
|
distances = np.linalg.norm(existing_xy - new_xy, axis=1)
|
|
|
if np.all(distances >= min_distance):
|
|
|
positions.append(new_pos)
|
|
|
active_list.append(len(positions) - 1)
|
|
|
found = True
|
|
|
break
|
|
|
|
|
|
|
|
|
if not found:
|
|
|
active_list.pop(idx)
|
|
|
|
|
|
|
|
|
if len(positions) < num_samples:
|
|
|
while len(positions) < num_samples:
|
|
|
candidate = [
|
|
|
float(np.random.uniform(bounds['x_min'], bounds['x_max'])),
|
|
|
float(np.random.uniform(bounds['y_min'], bounds['y_max'])),
|
|
|
float(z_height)
|
|
|
]
|
|
|
|
|
|
existing_xy = np.array([p[:2] for p in positions])
|
|
|
candidate_xy = np.array(candidate[:2])
|
|
|
distances = np.linalg.norm(existing_xy - candidate_xy, axis=1)
|
|
|
|
|
|
if np.all(distances >= min_distance * 0.5):
|
|
|
positions.append(candidate)
|
|
|
|
|
|
return positions[:num_samples]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from math import pi, cos, sin, acos
|
|
|
|
|
|
@dataclass
|
|
|
class CameraPose:
|
|
|
"""存储相机位姿,包括位置和观察目标点"""
|
|
|
position: List[float]
|
|
|
look_at: List[float]
|
|
|
|
|
|
def _generate_points_on_sphere(num_points: int, target_center: np.ndarray, distance: float, z_min_ratio=-0.2) -> List[np.ndarray]:
|
|
|
"""
|
|
|
使用斐波那契晶格在球面上生成均匀分布的点。
|
|
|
|
|
|
Args:
|
|
|
num_points: 要生成的点数。
|
|
|
target_center: 球心(即目标物体中心)。
|
|
|
distance: 球体半径(即相机与物体的距离)。
|
|
|
z_min_ratio: Z轴方向的最小余弦值,用于限制采样范围(例如,避免从正下方采样)。
|
|
|
-1.0 为完整球体,0.0 为上半球。默认 -0.2,稍微偏下一点。
|
|
|
|
|
|
Returns:
|
|
|
List of np.ndarray: 球面上的点坐标列表。
|
|
|
"""
|
|
|
points = []
|
|
|
phi = pi * (3. - np.sqrt(5.))
|
|
|
|
|
|
for i in range(num_points):
|
|
|
|
|
|
y = 1 - (i / float(num_points - 1)) * 2
|
|
|
|
|
|
|
|
|
if y < z_min_ratio:
|
|
|
continue
|
|
|
|
|
|
radius = np.sqrt(1 - y * y)
|
|
|
theta = phi * i
|
|
|
|
|
|
x = cos(theta) * radius
|
|
|
z = sin(theta) * radius
|
|
|
|
|
|
|
|
|
point_on_sphere = np.array([x, y, z]) * distance + target_center
|
|
|
points.append(point_on_sphere)
|
|
|
|
|
|
return points
|
|
|
|
|
|
|
|
|
def sample_cameras_around_targets(
|
|
|
target_object_indices: List[int],
|
|
|
object_vertices_list: List[np.ndarray],
|
|
|
scene_bounds: Dict,
|
|
|
samples_per_target: int = 20,
|
|
|
dist_factor_min: float = 2.0,
|
|
|
dist_factor_max: float = 3.5,
|
|
|
camera_config: Optional[CameraConfig] = None,
|
|
|
collision_threshold: float = 0.0
|
|
|
) -> List[CameraPose]:
|
|
|
"""
|
|
|
围绕指定的目标物体采样相机位姿。
|
|
|
|
|
|
Args:
|
|
|
target_object_indices: 目标物体的索引列表。
|
|
|
object_vertices_list: 场景中所有物体的顶点列表。
|
|
|
scene_bounds: 场景的边界信息(由 compute_scene_bounds 生成)。
|
|
|
samples_per_target: 每个目标物体周围尝试采样的相机数量。
|
|
|
dist_factor_min: 计算相机距离的最小系数(乘以物体AABB对角线长度)。
|
|
|
dist_factor_max: 计算相机距离的最大系数。
|
|
|
camera_config: 相机配置。
|
|
|
collision_threshold: 碰撞检测的IoU阈值。
|
|
|
|
|
|
Returns:
|
|
|
List[CameraPose]: 所有有效的相机位姿列表。
|
|
|
"""
|
|
|
if camera_config is None:
|
|
|
camera_config = DEFAULT_CAMERA
|
|
|
|
|
|
print(f"开始围绕 {len(target_object_indices)} 个目标物体进行采样...")
|
|
|
|
|
|
|
|
|
all_object_aabbs = [compute_aabb_from_vertices(verts) for verts in object_vertices_list]
|
|
|
|
|
|
valid_camera_poses = []
|
|
|
|
|
|
for target_idx in target_object_indices:
|
|
|
if not 0 <= target_idx < len(all_object_aabbs):
|
|
|
print(f"警告: 目标索引 {target_idx} 超出范围,已跳过。")
|
|
|
continue
|
|
|
|
|
|
target_aabb = all_object_aabbs[target_idx]
|
|
|
target_center = target_aabb['center']
|
|
|
|
|
|
|
|
|
aabb_diagonal = np.linalg.norm(np.array(target_aabb['extent']) * 2)
|
|
|
cam_distance = np.random.uniform(
|
|
|
aabb_diagonal * dist_factor_min,
|
|
|
aabb_diagonal * dist_factor_max
|
|
|
)
|
|
|
|
|
|
print(f"\n正在处理目标物体 {target_idx}:")
|
|
|
print(f" - 中心点: [{target_center[0]:.1f}, {target_center[1]:.1f}, {target_center[2]:.1f}]")
|
|
|
print(f" - AABB对角线长度: {aabb_diagonal:.1f} cm")
|
|
|
print(f" - 采样距离: {cam_distance:.1f} cm")
|
|
|
|
|
|
|
|
|
candidate_positions = _generate_points_on_sphere(
|
|
|
samples_per_target,
|
|
|
target_center,
|
|
|
cam_distance
|
|
|
)
|
|
|
|
|
|
valid_count = 0
|
|
|
for i, pos in enumerate(candidate_positions):
|
|
|
|
|
|
if not (scene_bounds['x_min'] <= pos[0] <= scene_bounds['x_max'] and
|
|
|
scene_bounds['y_min'] <= pos[1] <= scene_bounds['y_max'] and
|
|
|
scene_bounds['z_min'] <= pos[2] <= scene_bounds['z_max']):
|
|
|
continue
|
|
|
|
|
|
|
|
|
collision_info = check_camera_collision(
|
|
|
camera_position=pos,
|
|
|
object_vertices_list=object_vertices_list,
|
|
|
camera_config=camera_config,
|
|
|
collision_threshold=collision_threshold,
|
|
|
use_improved_search=True
|
|
|
)
|
|
|
|
|
|
|
|
|
if not collision_info['collision']:
|
|
|
pose = CameraPose(
|
|
|
position=[float(p) for p in pos],
|
|
|
look_at=[float(c) for c in target_center]
|
|
|
)
|
|
|
valid_camera_poses.append(pose)
|
|
|
valid_count += 1
|
|
|
|
|
|
print(f" - 生成了 {len(candidate_positions)} 个候选位置,其中 {valid_count} 个有效。")
|
|
|
|
|
|
print(f"\n采样完成。总共获得了 {len(valid_camera_poses)} 个有效的相机位姿。")
|
|
|
return valid_camera_poses |