import copy import json import os from typing import Any import cv2 import matplotlib.pyplot as plt import numpy as np from PIL import Image from lychsim.api import LychSim from lychsim.utils.camera_projection_utils import project_3d_to_2d, get_bbox3d from dataclasses import dataclass from typing import List, Optional, Dict, Tuple from scipy.spatial import cKDTree from collections import defaultdict class EasyDict(dict): """Convenience class that behaves like a dict but allows access with the attribute syntax.""" def __getattr__(self, name: str) -> Any: try: return self[name] except KeyError: raise AttributeError(name) def __setattr__(self, name: str, value: Any) -> None: self[name] = value def __delattr__(self, name: str) -> None: del self[name] def init_sampling_params(state): # list of table and floor objects # will be provided by Xingrui and Siyi state.floor_objects = [ "/Game/ManagerOffice/Meshes/Props/SM_AmchairTreadle.SM_AmchairTreadle", "/Game/ManagerOffice/Meshes/Props/SM_ArmchairManager.SM_ArmchairManager", "/Game/ManagerOffice/Meshes/Props/SM_ColumnTable.SM_ColumnTable", "/Game/ManagerOffice/Meshes/Props/SM_Decorative17.SM_Decorative17", "/Game/ManagerOffice/Meshes/Props/SM_Komod.SM_Komod", "/Game/ManagerOffice/Meshes/Props/SM_KomodB.SM_KomodB", "/Game/ManagerOffice/Meshes/Props/SM_Plant2.SM_Plant2", "/Game/ManagerOffice/Meshes/Props/SM_Plant1.SM_Plant1", "/Game/ManagerOffice/Meshes/Props/SM_TeaTable.SM_TeaTable", ] state.table_objects = [ "/Game/ManagerOffice/Meshes/Props/SM_Ashtray.SM_Ashtray", "/Game/ManagerOffice/Meshes/Props/SM_Award3.SM_Award3", "/Game/ManagerOffice/Meshes/Props/SM_Award9.SM_Award9", "/Game/ManagerOffice/Meshes/Props/SM_Book2.SM_Book2", "/Game/ManagerOffice/Meshes/Props/SM_CalendarDesk.SM_CalendarDesk", "/Game/ManagerOffice/Meshes/Props/SM_Decorative10.SM_Decorative10", "/Game/ManagerOffice/Meshes/Props/SM_Decorative37.SM_Decorative37", "/Game/ManagerOffice/Meshes/Props/SM_Fruits.SM_Fruits", "/Game/ManagerOffice/Meshes/Props/SM_PC.SM_PC", "/Game/ManagerOffice/Meshes/Props/SM_MarkerMug.SM_MarkerMug", ] mesh_extents = state.sim.get_mesh_extent(state.floor_objects + state.table_objects)[ "outputs" ] state.mesh_extents = { x["mesh_path"]: x["extent"] for x in mesh_extents if x["status"] == "ok" } for x in state.floor_objects: if x not in state.mesh_extents: print(f"Warning: Floor object {x} not found in the scene.") for x in state.table_objects: if x not in state.mesh_extents: print(f"Warning: Table object {x} not found in the scene.") state.floor_objects = [x for x in state.floor_objects if x in state.mesh_extents] state.table_objects = [x for x in state.table_objects if x in state.mesh_extents] state.table_height_margin_low, state.table_height_margin_high = ( -30.0, 50.0, ) # table object hit box [top-30, top+50] state.table_object_threshold = ( 0.75 # IoA threshold: intersection over object volume ) # number of trials to sample floor objects state.max_floor_sampling_trials = 20 # IoU threshold for floor object collision detection state.floor_object_collision_iou_thr = 0.1 # threshold for worst addition on floor: if worse than this, skip adding floor objects state.worst_floor_addition = -10 # number of trials to sample table objects state.max_table_sampling_trials = 20 # IoU threshold for table object collision detection state.table_object_collision_iou_thr = 0.1 # threshold for worst addition on table: if worse than this, skip adding table objects state.worst_table_addition = -10 def add_selection_as_floor(state, num_objects): objects = state.sim.list_selected() if objects["status"] != "ok": raise RuntimeError(f"Failed to get selected objects. Response: {objects}") new_floors = [] for obj in objects["outputs"]: obj_id = obj["object_id"] new_floors.append((obj_id, num_objects)) before_count = len(state.floors) state.floors.update(new_floors) print( f"Added {len(new_floors)} object(s) to the floor list (prev={before_count} " f"-> now={len(state.floors)}):\n{state.floors}" ) def add_selection_as_table(state, num_objects): objects = state.sim.list_selected() if objects["status"] != "ok": raise RuntimeError(f"Failed to get selected objects. Response: {objects}") new_tables = [] for obj in objects["outputs"]: obj_id = obj["object_id"] new_tables.append((obj_id, num_objects)) before_count = len(state.tables) state.tables.update(new_tables) print( f"Added {len(new_tables)} object(s) to the table list (prev={before_count} " f"-> now={len(state.tables)}):\n{state.tables}" ) def add_camera_location(state): cam_id = state.cam_id loc = state.sim.get_cam_loc(0) before_count = len(state.cam_locations) state.cam_locations.append(loc) print(f"New location added (prev={before_count} -> {len(state.cam_locations)}):") for loc in state.cam_locations: print(f"\t{loc}") def get_objects_on_aabb(state, table_aabb, objs_aabb): table_aabb, objs_aabb = copy.deepcopy(table_aabb), copy.deepcopy(objs_aabb) object_list = [] target_center, target_extent = table_aabb["center"], table_aabb["extent"] # we compute the space above the table state.table_height_margin_low, state.table_height_margin_high = -30.0, 50.0 target_center[2] = ( target_center[2] + target_extent[2] + (state.table_height_margin_low + state.table_height_margin_high) / 2.0 ) target_extent[2] = ( state.table_height_margin_high - state.table_height_margin_low ) / 2.0 tgt_min = np.array(target_center) - np.array(target_extent) tgt_max = np.array(target_center) + np.array(target_extent) for aabb in objs_aabb: if aabb["status"] != "ok" or aabb["object_id"] == table_aabb["object_id"]: continue aabb["extent"] = [max(x, 1e-6) for x in aabb["extent"]] obj_min = np.array(aabb["center"]) - np.array(aabb["extent"]) obj_max = np.array(aabb["center"]) + np.array(aabb["extent"]) inter_min = np.maximum(obj_min, tgt_min) inter_max = np.minimum(obj_max, tgt_max) inter_extent = np.maximum(0.0, inter_max - inter_min) inter_vol = np.prod(inter_extent) obj_vol = np.prod(2 * np.array(aabb["extent"])) if inter_vol / obj_vol >= state.table_object_threshold: object_list.append(aabb["object_id"]) return object_list def clear_table_objects(state, table_id, objs_aabb): objs_aabb = copy.deepcopy(objs_aabb) table_aabb = [x for x in objs_aabb if x["object_id"] == table_id][0] objects_on_table = get_objects_on_aabb(state, table_aabb, objs_aabb) for obj_id in objects_on_table: state.sim.del_obj(obj_id) def collide(center1, extent1, center2, extent2, thr): center1, extent1 = np.array(center1), np.array(extent1) center2, extent2 = np.array(center2), np.array(extent2) min1, max1 = center1 - extent1, center1 + extent1 min2, max2 = center2 - extent2, center2 + extent2 inter_min = np.maximum(min1, min2) inter_max = np.minimum(max1, max2) inter_extent = np.maximum(0.0, inter_max - inter_min) inter_vol = np.prod(inter_extent) vol1, vol2 = np.prod(2 * extent1), np.prod(2 * extent2) union_vol = vol1 + vol2 - inter_vol iou = inter_vol / union_vol if union_vol > 0 else 0.0 return iou >= thr def compute_addition_from_collision(state, objs_aabb, sampling): addition = len(sampling) # first check mutual collisions for obj1 in sampling: for obj2 in sampling: if obj1 >= obj2: continue if collide( sampling[obj1]["center"], sampling[obj1]["extent"], sampling[obj2]["center"], sampling[obj2]["extent"], state.floor_object_collision_iou_thr, ): return -1e5, [] tables = [x[0] for x in state.tables] all_collided_objects = [] for obj in sampling: collided_objects = [ x for x in objs_aabb if collide( x["center"], x["extent"], sampling[obj]["center"], sampling[obj]["extent"], state.floor_object_collision_iou_thr, ) ] for x in collided_objects: if x["object_id"] in tables: return -1e5, [] addition -= len(collided_objects) all_collided_objects.extend([x["object_id"] for x in collided_objects]) return addition, all_collided_objects def sample_floor_objects(state, floor_id, num_objects, objs_aabb): floor_aabb = state.sim.get_obj_aabb(floor_id)["outputs"][0] target_center, target_extent = np.array(floor_aabb["center"]), np.array( floor_aabb["extent"] ) target_extent[0] *= 0.9 target_extent[1] *= 0.9 best_sampling, best_addition, best_collisions = None, -1e6, None for _ in range(state.max_floor_sampling_trials): sampling = {} sampled_object_ids = [ state.floor_objects[i] for i in np.random.choice( len(state.floor_objects), num_objects, replace=False ) ] for soi in sampled_object_ids: horizontal_location = target_center[:2] + np.random.uniform( -target_extent[:2] * 0.5, target_extent[:2] * 0.5 ) vertical_location = target_center[2] + target_extent[2] sampling[soi] = dict( center=list(horizontal_location) + [vertical_location], extent=state.mesh_extents[soi], ) addition, collisions = compute_addition_from_collision( state, objs_aabb, sampling ) if addition > best_addition: best_addition = addition best_sampling = sampling best_collisions = collisions if best_addition < state.worst_floor_addition: # print(f"Best addition: {best_addition}, collisions: {best_collisions}") return None for obj_id in best_collisions: state.sim.del_obj(obj_id) # print(f"del {obj_id}") for obj_id in best_sampling: loc = best_sampling[obj_id]["center"] rot = [0.0, float(np.random.uniform(0, 360)), 0.0] state.sim.add_obj(f"{obj_id.split('.')[-1]}_{random_uuid()}", obj_id, loc, rot) # print(f"add {obj_id}, {loc}, {rot}") def sample_table_objects(state, table_id, num_objects, objs_aabb): table_aabb = state.sim.get_obj_aabb(table_id)["outputs"][0] target_center, target_extent = np.array(table_aabb["center"]), np.array( table_aabb["extent"] ) target_extent[0] *= 0.9 target_extent[1] *= 0.9 best_sampling, best_addition, best_collisions = None, -1e6, None for _ in range(state.max_table_sampling_trials): sampling = {} sampled_object_ids = [ state.table_objects[i] for i in np.random.choice( len(state.table_objects), num_objects, replace=False ) ] for soi in sampled_object_ids: horizontal_location = target_center[:2] + np.random.uniform( -target_extent[:2] * 0.5, target_extent[:2] * 0.5 ) vertical_location = target_center[2] + target_extent[2] sampling[soi] = dict( center=list(horizontal_location) + [vertical_location], extent=state.mesh_extents[soi], ) addition, collisions = compute_addition_from_collision( state, objs_aabb, sampling ) if addition > best_addition: best_addition = addition best_sampling = sampling best_collisions = collisions if best_addition < state.worst_table_addition: print(f"Best addition: {best_addition}, collisions: {best_collisions}") return None for obj_id in best_collisions: state.sim.del_obj(obj_id) print(f"del {obj_id}") for obj_id in best_sampling: loc = best_sampling[obj_id]["center"] rot = [0.0, float(np.random.uniform(0, 360)), 0.0] state.sim.add_obj(f"{obj_id.split('.')[-1]}_{random_uuid()}", obj_id, loc, rot) print(f"add {obj_id}, {loc}, {rot}") def sample_random_placement(state): objs_aabb = state.sim.get_obj_aabb()["outputs"] for floor_id, num_objects in state.floors: sample_floor_objects(state, floor_id, num_objects, objs_aabb) for table_id, num_objects in state.tables: clear_table_objects(state, table_id, objs_aabb) sample_table_objects(state, table_id, num_objects, objs_aabb) def get_random_camera_rotations(state): def sample_rotation(): pitch = float(np.random.uniform(state.min_pitch, state.max_pitch)) yaw = float(np.random.uniform(0, 360)) roll = 0.0 return [pitch, yaw, roll] return [sample_rotation() for _ in range(state.random_viewpoints_per_location)] def get_random_camera_rotations_fixed_yaw(state): yaw_list = np.arange(0, 360, 60) def sample_rotation(i): pitch = 0.0 yaw = yaw_list[i] roll = 0.0 return [pitch, yaw, roll] return [sample_rotation(i) for i in range(len(yaw_list))] def add_random_camera_height_offset(loc, state): offset = float( np.random.uniform( -state.random_camera_height_offset, state.random_camera_height_offset ) ) new_loc = loc.copy() new_loc[2] += offset return new_loc def set_camera_location_and_rotation(scene_state, cam_loc_final, cam_rot): cam_id = scene_state.cam_id sim = scene_state.sim sim.set_cam_loc(cam_id, cam_loc_final) sim.set_cam_rot(cam_id, cam_rot) def save_state(scene_state): save_state = {} for k in scene_state: if isinstance(scene_state[k], LychSim): save_state[k] = str(type(scene_state[k])) elif isinstance(scene_state[k], set): save_state[k] = list(scene_state[k]) else: save_state[k] = scene_state[k] save_path = os.path.join(scene_state.save_path, scene_state.scene_name) os.makedirs(save_path, exist_ok=True) with open(os.path.join(save_path, "state.json"), "w") as f: json.dump(save_state, f, indent=4) def capture_and_save(scene_state, view_name, camera_warmup_steps=10): scene_output_path = os.path.join( scene_state.save_path, scene_state.scene_name, view_name ) os.makedirs(scene_output_path, exist_ok=True) scene_state.sim.warmup_cam(scene_state.cam_id, camera_warmup_steps) image = scene_state.sim.get_cam_lit(scene_state.cam_id) image.save(os.path.join(scene_output_path, "lit.png")) seg = scene_state.sim.get_cam_seg(scene_state.cam_id) seg.save(os.path.join(scene_output_path, "seg.png")) depth = scene_state.sim.get_cam_depth(scene_state.cam_id) np.save(os.path.join(scene_output_path, "depth.npy"), depth) normal = scene_state.sim.get_cam_normal(scene_state.cam_id) normal.save(os.path.join(scene_output_path, "normal.png")) annots_obj = scene_state.sim.get_obj_annots() with open(os.path.join(scene_output_path, "object_annots.json"), "w") as f: json.dump(annots_obj, f) annots_cam = scene_state.sim.get_cam_annots(scene_state.cam_id) fov = annots_cam["outputs"]["fov"] w = annots_cam["outputs"]["width"] h = annots_cam["outputs"]["height"] fovx = np.deg2rad(fov) fx = 0.5 * w / np.tan(0.5 * fovx) fovy = 2.0 * np.arctan((h / float(w)) * np.tan(0.5 * fovx)) fy = 0.5 * h / np.tan(0.5 * fovy) annots_cam["outputs"]["fxfycxcy"] = [fx, fy, w / 2.0, h / 2.0] with open(os.path.join(scene_output_path, "camera_annots.json"), "w") as f: json.dump(annots_cam, f) scene_state.sim.clear_annot_comps() def capture_and_save_filter(scene_state, view_name, camera_warmup_steps=10): scene_output_path = os.path.join( scene_state.save_path, scene_state.scene_name, view_name ) os.makedirs(scene_output_path, exist_ok=True) seg = scene_state.sim.get_cam_seg(scene_state.cam_id) seg.save(os.path.join(scene_output_path, "seg.png")) depth = scene_state.sim.get_cam_depth(scene_state.cam_id) np.save(os.path.join(scene_output_path, "depth.npy"), depth) annots_obj = scene_state.sim.get_obj_annots() with open(os.path.join(scene_output_path, "object_annots.json"), "w") as f: json.dump(annots_obj, f) annots_cam = scene_state.sim.get_cam_annots(scene_state.cam_id) fov = annots_cam["outputs"]["fov"] w = annots_cam["outputs"]["width"] h = annots_cam["outputs"]["height"] fovx = np.deg2rad(fov) fx = 0.5 * w / np.tan(0.5 * fovx) fovy = 2.0 * np.arctan((h / float(w)) * np.tan(0.5 * fovx)) fy = 0.5 * h / np.tan(0.5 * fovy) annots_cam["outputs"]["fxfycxcy"] = [fx, fy, w / 2.0, h / 2.0] with open(os.path.join(scene_output_path, "camera_annots.json"), "w") as f: json.dump(annots_cam, f) scene_state.sim.clear_annot_comps() def capture_and_save_image(scene_state, view_name, camera_warmup_steps=10): scene_output_path = os.path.join( scene_state.save_path, scene_state.scene_name, view_name ) os.makedirs(scene_output_path, exist_ok=True) scene_state.sim.warmup_cam(scene_state.cam_id, camera_warmup_steps) image = scene_state.sim.get_cam_lit(scene_state.cam_id) image.save(os.path.join(scene_output_path, "lit.png")) def visualize_bbox(img, corners_2d, edges, color=(255, 255, 0, 255), thickness=2): for i, j in edges: pt1 = (int(corners_2d[i, 0]), int(corners_2d[i, 1])) pt2 = (int(corners_2d[j, 0]), int(corners_2d[j, 1])) cv2.line(img, pt1, pt2, color, thickness) plt.imshow(img) return img def draw_bbox_3d(img, center, extent, c2w, fov): if isinstance(img, Image.Image): img = np.array(img) vis_img = np.array(img).copy() corners, edges = get_bbox3d(center=center, extent=extent) pts2d, in_front = project_3d_to_2d(corners, c2w, fov, 1920, 1080) vis_img = visualize_bbox(vis_img, pts2d, edges, color=(0, 255, 0, 255)) return Image.fromarray(vis_img) def random_uuid(length=4): return "".join( np.random.choice(list("abcdefghijklmnopqrstuvwxyz0123456789"), size=length) ) class CameraPositionEvaluator: """ 相机位置质量评估器 - 判断深度图和分割掩码质量是否合格 评分权重:深度40% + 分割60% 分割要求(非常严格): - ⚠️ 物体总数<6个,分割评分直接返回0,必定不合格 - ⚠️ 任何物体占比>50%,分割评分直接返回0,必定不合格 - 物体总数≥20个为满分,12-20个部分得分 - 小物体(占比<5%)需要≥6个 - 平均物体占比2-8%为理想 - 最大物体占比理想范围10%-30% 深度异常值检测策略(极其严格): - 自动过滤常见的无效深度值(65504, 65535, 0等) - ⚠️ 如果有效深度<90%(即无效值>10%),深度评分直接返回0,必定不合格 - 检测深度单一性:如果深度值过于集中(如一面墙),会被降分 - 智能判断:如果深度有足够变化(标准差/熵高,说明墙前有物品),则放宽集中度要求 - 使用中位数而非均值计算比值(更鲁棒,不受极端值影响) - 最大深度/中位数比:检测单个极端异常值 - 离群值占比:检测多个异常大的深度值(室外空旷区域) """ def __init__(self, threshold: float = 0.6, background_color: Tuple[int, int, int] = (0, 0, 0)): """ 参数: threshold: 合格阈值,0-1之间,默认0.6 background_color: 背景颜色RGB值,默认为黑色(0, 0, 0) """ self.threshold = threshold self.depth_weight = 0.4 # 深度权重 self.seg_weight = 0.6 # 分割权重 self.background_color = background_color def evaluate(self, depth_map: np.ndarray, seg_mask: np.ndarray) -> Dict: """ 评估相机位置是否合格 参数: depth_map: 深度图 (H, W),单位米 seg_mask: 分割掩码 (H, W, 4),值为RGBA颜色,格式为(r, g, b, 255) 返回: 包含评估结果的字典: { 'is_qualified': bool, # 是否合格 'score': float, # 总评分 0-1 'depth_score': float, # 深度评分 'seg_score': float, # 分割评分 'details': dict # 详细指标 } """ # 验证分割掩码的形状 if len(seg_mask.shape) != 3 or seg_mask.shape[2] != 4: raise ValueError(f"分割掩码形状应为 (H, W, 4),但得到 {seg_mask.shape}") # 深度评估 depth_metrics = self._evaluate_depth(depth_map) depth_score = self._score_depth(depth_metrics) # 分割评估 seg_metrics = self._evaluate_segmentation(seg_mask) seg_score = self._score_segmentation(seg_metrics) # 综合评分 (深度40%,分割60%) total_score = (depth_score * self.depth_weight + seg_score * self.seg_weight) # 判断是否合格 is_qualified = total_score >= self.threshold return { 'is_qualified': is_qualified, 'score': round(total_score, 3), 'depth_score': round(depth_score, 3), 'seg_score': round(seg_score, 3), 'details': { 'depth': depth_metrics, 'segmentation': seg_metrics } } def _evaluate_depth(self, depth_map: np.ndarray) -> Dict[str, float]: """评估深度图特征""" # 常见的无效深度标记值 INVALID_DEPTH_VALUES = [65504.0, 65535.0, 0.0] # 过滤无效深度值 valid_mask = depth_map > 0 for invalid_val in INVALID_DEPTH_VALUES: valid_mask = valid_mask & (np.abs(depth_map - invalid_val) > 1.0) valid_depth = depth_map[valid_mask] if len(valid_depth) == 0: return { 'coverage': 0.0, 'range_mean_ratio': 0.0, 'std_mean_ratio': 0.0, 'entropy': 0.0, 'max_depth': 0.0, 'far_pixel_ratio': 0.0, 'max_median_ratio': 0.0, 'outlier_ratio': 0.0, 'valid_depth_ratio': 0.0, 'depth_concentration': 0.0 } # 1. 有效深度覆盖率 - 真正有效的深度像素占比 valid_depth_ratio = len(valid_depth) / depth_map.size # 2. 深度覆盖率(向后兼容) coverage = valid_depth_ratio # 3. 深度范围与均值的比值 depth_range = float(np.max(valid_depth) - np.min(valid_depth)) mean_depth = float(np.mean(valid_depth)) range_mean_ratio = depth_range / mean_depth if mean_depth > 0 else 0.0 # 4. 深度标准差与均值的比值 std_depth = float(np.std(valid_depth)) std_mean_ratio = std_depth / mean_depth if mean_depth > 0 else 0.0 # 5. 深度分布熵 hist, _ = np.histogram(valid_depth, bins=20) hist = hist / hist.sum() hist = hist[hist > 0] entropy = -np.sum(hist * np.log(hist)) # 6. 最大深度值 max_depth = float(np.max(valid_depth)) # 7. 使用中位数检测远距离像素 median_depth = float(np.median(valid_depth)) # 远距离像素占比 far_threshold = median_depth * 5.0 far_pixels = valid_depth > far_threshold far_pixel_ratio = float(np.sum(far_pixels) / len(valid_depth)) # 8. 最大深度/中位数比值 max_median_ratio = max_depth / median_depth if median_depth > 0 else 0.0 # 9. 离群值占比 percentile_75 = float(np.percentile(valid_depth, 75)) outlier_threshold = percentile_75 * 10.0 outliers = valid_depth > outlier_threshold outlier_ratio = float(np.sum(outliers) / len(valid_depth)) # 10. 深度集中度 - 检测深度值是否过于单一(比如大部分是一面墙) # 计算在中位数±15%范围内的像素占比 median_threshold_low = median_depth * 0.85 median_threshold_high = median_depth * 1.15 concentrated_pixels = (valid_depth >= median_threshold_low) & (valid_depth <= median_threshold_high) depth_concentration = float(np.sum(concentrated_pixels) / len(valid_depth)) return { 'coverage': float(coverage), 'range_mean_ratio': float(range_mean_ratio), 'std_mean_ratio': float(std_mean_ratio), 'entropy': float(entropy), 'max_depth': float(max_depth), 'far_pixel_ratio': float(far_pixel_ratio), 'max_median_ratio': float(max_median_ratio), 'outlier_ratio': float(outlier_ratio), 'valid_depth_ratio': float(valid_depth_ratio), 'depth_concentration': float(depth_concentration) } def _evaluate_segmentation(self, seg_mask: np.ndarray) -> Dict[str, float]: """ 评估分割掩码特征 参数: seg_mask: 分割掩码 (H, W, 4),RGBA格式 """ # 提取RGB通道(忽略alpha通道) rgb_mask = seg_mask[:, :, :3] # 重塑为(H*W, 3)以便处理 h, w = rgb_mask.shape[:2] total_pixels = h * w rgb_flat = rgb_mask.reshape(-1, 3) # 使用字典统计每个颜色的像素数 color_counts = defaultdict(int) for pixel in rgb_flat: color_tuple = tuple(pixel) color_counts[color_tuple] += 1 # 过滤背景颜色 if self.background_color in color_counts: del color_counts[self.background_color] # 获取唯一颜色(物体)数量 num_objects = len(color_counts) if num_objects == 0: return { 'num_objects': 0, 'num_small_objects': 0, 'max_coverage': 0.0, 'min_coverage': 0.0, 'avg_coverage': 0.0, 'has_large_object': False, 'color_distribution': {} } # 计算每个物体的覆盖率 coverages = [] small_object_threshold = 0.05 # 占比<5%的算小物体 large_object_threshold = 0.5 # 占比>50%的算大物体 num_small_objects = 0 has_large_object = False color_distribution = {} for color, count in color_counts.items(): coverage = count / total_pixels coverages.append(coverage) # 统计小物体数量 if coverage < small_object_threshold: num_small_objects += 1 # 检测大物体 if coverage > large_object_threshold: has_large_object = True # 记录颜色分布(可选,用于调试) color_str = f"RGB{color}" color_distribution[color_str] = round(coverage, 4) # 对覆盖率排序,便于查看分布 color_distribution = dict(sorted(color_distribution.items(), key=lambda x: x[1], reverse=True)) return { 'num_objects': float(num_objects), 'num_small_objects': float(num_small_objects), 'max_coverage': float(max(coverages)) if coverages else 0.0, 'min_coverage': float(min(coverages)) if coverages else 0.0, 'avg_coverage': float(np.mean(coverages)) if coverages else 0.0, 'has_large_object': has_large_object, # 添加大物体标记 'color_distribution': color_distribution # 添加颜色分布信息 } def _score_segmentation(self, metrics: Dict[str, float]) -> float: """计算分割评分 (0-1) - 严格要求物体数量、小物体数量,并惩罚大面积物体""" num_objects = metrics['num_objects'] num_small_objects = metrics['num_small_objects'] max_coverage = metrics['max_coverage'] # 硬性要求1:物体<6个直接不合格 if num_objects < 6: return 0.0 # 硬性要求2:任何物体占比超过50%直接不合格 if max_coverage > 0.5: return 0.0 score = 0.0 # 物体总数量评分 (12-20个部分得分,≥20个满分) - 权重30% if num_objects >= 20: score += 0.3 elif num_objects >= 12: # 12-20个之间线性增长 score += ((num_objects - 12) / 8) * 0.3 else: # 6-12个之间降低得分 score += ((num_objects - 6) / 6) * 0.15 # 小物体数量评分 (≥6个满分,<6个按比例) - 权重30% if num_small_objects >= 6: score += 0.3 else: score += (num_small_objects / 6) * 0.3 # 最大物体占比评分 (理想范围10%-30%) - 权重20% # 由于已经在50%处设置了硬性门槛,这里优化30%-50%之间的评分 if max_coverage <= 0.1: # 太小也不理想(可能是分割过于碎片化) score += max_coverage / 0.1 * 0.1 elif max_coverage <= 0.3: # 10%-30%是理想范围 score += 0.2 else: # 30%-50%之间线性下降 score += (0.5 - max_coverage) / 0.2 * 0.2 # 最小物体占比 (至少0.3%) - 权重10% min_coverage = metrics['min_coverage'] if min_coverage >= 0.003: score += 0.1 else: score += min_coverage / 0.003 * 0.1 # 平均物体占比 (2-8%为理想,物体多所以占比要小) - 权重10% avg_coverage = metrics['avg_coverage'] if 0.02 <= avg_coverage <= 0.08: score += 0.1 elif avg_coverage < 0.02: score += avg_coverage / 0.02 * 0.1 else: score += max(0, (1 - (avg_coverage - 0.08) / 0.12)) * 0.1 return min(score, 1.0) def _score_depth(self, metrics: Dict[str, float]) -> float: """计算深度评分 (0-1) - 严格惩罚无效值和单一深度场景""" # 严格检查有效深度比例 - 无效值>10%直接不合格 valid_depth_ratio = metrics['valid_depth_ratio'] if valid_depth_ratio < 0.9: # 有效深度<90%(即无效值>10%),直接返回0分 return 0.0 score = 0.0 # 有效深度覆盖率评分 (>98%为好) - 权重15% if valid_depth_ratio >= 0.98: score += 0.15 else: # 90-98%之间线性评分 score += ((valid_depth_ratio - 0.9) / 0.08) * 0.15 # 深度范围/均值比评分 (0.5-2.0为理想) - 权重10% range_mean_ratio = metrics['range_mean_ratio'] if 0.5 <= range_mean_ratio <= 2.0: score += 0.1 elif range_mean_ratio < 0.5: score += range_mean_ratio / 0.5 * 0.1 else: score += max(0, (1 - (range_mean_ratio - 2.0) / 3.0)) * 0.1 # 深度标准差/均值比评分 (0.2-0.6为理想) - 权重10% std_mean_ratio = metrics['std_mean_ratio'] if 0.2 <= std_mean_ratio <= 0.6: score += 0.1 elif std_mean_ratio < 0.2: score += std_mean_ratio / 0.2 * 0.1 else: score += max(0, (1 - (std_mean_ratio - 0.6) / 0.6)) * 0.1 # 深度分布熵评分 (越高越好) - 权重10% entropy = metrics['entropy'] max_entropy = 3.0 score += min(entropy / max_entropy, 1.0) * 0.1 # 深度集中度惩罚 - 权重15%(检测单一深度场景如一面墙) depth_concentration = metrics['depth_concentration'] # 如果标准差/熵都比较高,说明有物品,放宽集中度要求 has_variation = (std_mean_ratio >= 0.25) or (entropy >= 2.0) if has_variation: # 有足够的深度变化(墙前有物品),集中度要求宽松 if depth_concentration <= 0.6: score += 0.15 elif depth_concentration <= 0.8: score += (0.8 - depth_concentration) / 0.2 * 0.15 else: score += 0.05 # 即使有变化,但集中度过高也要扣一些分 else: # 深度变化不足,严格要求集中度 if depth_concentration <= 0.5: score += 0.15 elif depth_concentration <= 0.7: score += (0.7 - depth_concentration) / 0.2 * 0.15 else: # 集中度>70%且无变化,严重扣分 score += 0.0 # 最大深度/中位数比值惩罚 - 权重20% max_median_ratio = metrics['max_median_ratio'] if max_median_ratio <= 5.0: score += 0.2 elif max_median_ratio <= 10.0: score += (10.0 - max_median_ratio) / 5.0 * 0.2 else: penalty = max(0, 1 - (max_median_ratio - 10.0) / 50.0) score += penalty * 0.2 # 离群值占比惩罚 - 权重20% outlier_ratio = metrics['outlier_ratio'] if outlier_ratio <= 0.01: score += 0.2 elif outlier_ratio <= 0.05: score += (0.05 - outlier_ratio) / 0.04 * 0.2 else: penalty = max(0, 1 - (outlier_ratio - 0.05) / 0.15) score += penalty * 0.2 return min(score, 1.0) @dataclass class CameraConfig: """相机配置类,统一管理相机参数""" width: float = 40.0 height: float = 40.0 depth: float = 40.0 @property def size(self) -> List[float]: return [self.width, self.height, self.depth] @property def half_extents(self) -> List[float]: return [self.width/2, self.height/2, self.depth/2] # 全局默认相机配置 DEFAULT_CAMERA = CameraConfig() def compute_aabb_from_vertices(vertices): """ 从顶点计算AABB(轴对齐包围盒)的中心和半长 Args: vertices: (N, 3) array, 物体的顶点 Returns: dict: { 'center': (3,) array, 'extent': (3,) array (半长), 'radius': float (包围球半径,用于快速排除) } """ min_point = vertices.min(axis=0) max_point = vertices.max(axis=0) center = (min_point + max_point) / 2 extent = (max_point - min_point) / 2 # 计算包围球半径(用于快速排除) radius = np.linalg.norm(extent) return { 'center': center, 'extent': extent, 'radius': radius, 'min': min_point, 'max': max_point } def estimate_aabb_distance(aabb1_info, aabb2_info): """ 估算两个AABB之间的距离 使用包围球距离减去半径作为下界估计 Args: aabb1_info, aabb2_info: AABB信息字典 Returns: float: 估算的最小距离(可能为负表示重叠) """ center_dist = np.linalg.norm(aabb2_info['center'] - aabb1_info['center']) return center_dist - (aabb1_info['radius'] + aabb2_info['radius']) def create_camera_aabb_vertices(position, camera_config=None): """ 创建相机的AABB顶点 Args: position: [x, y, z] 相机中心位置 camera_config: CameraConfig实例,None则使用默认配置 Returns: (8, 3) array: 8个顶点坐标 """ if camera_config is None: camera_config = DEFAULT_CAMERA x, y, z = position w, h, d = camera_config.half_extents # 创建8个顶点(AABB) vertices = np.array([ [x - w, y - h, z - d], # 0: 底面左下 [x + w, y - h, z - d], # 1: 底面右下 [x + w, y + h, z - d], # 2: 底面右上 [x - w, y + h, z - d], # 3: 底面左上 [x - w, y - h, z + d], # 4: 顶面左下 [x + w, y - h, z + d], # 5: 顶面右下 [x + w, y + h, z + d], # 6: 顶面右上 [x - w, y + h, z + d], # 7: 顶面左上 ]) return vertices def check_camera_collision(camera_position, object_vertices_list, camera_config=None, check_nearest=10, collision_threshold=0.0, use_improved_search=True): """ 检查相机位置是否与场景中的物体发生碰撞 Args: camera_position: [x, y, z] 相机位置 object_vertices_list: list of (N, 3) arrays,场景中所有物体的顶点 camera_config: CameraConfig实例,None则使用默认配置 check_nearest: 检查最近的几个物体 collision_threshold: IoU碰撞阈值,默认0(任何重叠都算碰撞) use_improved_search: 是否使用改进的搜索方法 Returns: dict: { 'collision': bool, 'colliding_indices': list, 'collision_ious': list, # 每个碰撞的IoU值 'nearest_indices': list, 'nearest_distances': list, 'checked_count': int } """ if camera_config is None: camera_config = DEFAULT_CAMERA # 创建相机AABB camera_center = np.array(camera_position) camera_extent = np.array(camera_config.half_extents) # 预计算所有物体的AABB信息 object_aabb_infos = [compute_aabb_from_vertices(verts) for verts in object_vertices_list] if use_improved_search: # 改进的方法:使用包围球距离估算 camera_aabb_info = { 'center': camera_center, 'extent': camera_extent, 'radius': np.linalg.norm(camera_extent) } distances = [] for i, aabb_info in enumerate(object_aabb_infos): # 使用包围球距离作为估算 dist = estimate_aabb_distance(camera_aabb_info, aabb_info) distances.append((dist, i)) # 按距离排序 distances.sort(key=lambda x: x[0]) # 选择最近的物体进行精确检查 indices_to_check = [idx for _, idx in distances[:check_nearest]] nearest_distances = [dist for dist, _ in distances[:check_nearest]] else: # 原始方法:使用中心点距离 object_centers = np.array([info['center'] for info in object_aabb_infos]) kdtree = cKDTree(object_centers) center_distances, indices = kdtree.query(camera_position, k=min(check_nearest, len(object_centers))) if not isinstance(center_distances, np.ndarray): center_distances = np.array([center_distances]) indices = np.array([indices]) indices_to_check = indices nearest_distances = center_distances.tolist() # 检查碰撞 colliding_indices = [] collision_ious = [] checked_count = 0 for idx in indices_to_check: if not 0 <= idx < len(object_aabb_infos): continue checked_count += 1 # 使用新的collide函数检查碰撞 obj_info = object_aabb_infos[idx] # 计算IoU用于记录 iou = compute_iou(camera_center, camera_extent, obj_info['center'], obj_info['extent']) if collide(camera_center, camera_extent, obj_info['center'], obj_info['extent'], collision_threshold): colliding_indices.append(int(idx)) collision_ious.append(float(iou)) return { 'collision': len(colliding_indices) > 0, 'colliding_indices': colliding_indices, 'collision_ious': collision_ious, 'nearest_indices': [int(idx) for idx in indices_to_check], 'nearest_distances': nearest_distances, 'checked_count': checked_count } def compute_iou(center1, extent1, center2, extent2): """ 计算两个AABB的IoU值 Args: center1, extent1: 第一个AABB的中心和半长 center2, extent2: 第二个AABB的中心和半长 Returns: float: IoU值(0到1之间) """ center1, extent1 = np.array(center1), np.array(extent1) center2, extent2 = np.array(center2), np.array(extent2) min1, max1 = center1 - extent1, center1 + extent1 min2, max2 = center2 - extent2, center2 + extent2 inter_min = np.maximum(min1, min2) inter_max = np.minimum(max1, max2) inter_extent = np.maximum(0.0, inter_max - inter_min) inter_vol = np.prod(inter_extent) vol1, vol2 = np.prod(2 * extent1), np.prod(2 * extent2) union_vol = vol1 + vol2 - inter_vol iou = inter_vol / union_vol if union_vol > 0 else 0.0 return iou def compute_scene_bounds(object_vertices_list, margin=30, trim_percent=10, camera_config=None): """ 计算包含所有物体的边界框,去掉极值 Args: object_vertices_list: list of (N, 3) arrays margin: 边界内缩距离(cm) trim_percent: 去掉的极值百分比(0-50) camera_config: CameraConfig实例,用于确保边界足够大 Returns: dict: 边界信息 """ if camera_config is None: camera_config = DEFAULT_CAMERA # 收集所有顶点 all_vertices = np.vstack(object_vertices_list) total_vertices = len(all_vertices) # 计算要修剪的百分位数 lower_percentile = trim_percent upper_percentile = 100 - trim_percent # 对每个轴分别计算修剪后的范围 x_min = np.percentile(all_vertices[:, 0], lower_percentile) x_max = np.percentile(all_vertices[:, 0], upper_percentile) y_min = np.percentile(all_vertices[:, 1], lower_percentile) y_max = np.percentile(all_vertices[:, 1], upper_percentile) z_min = np.percentile(all_vertices[:, 2], lower_percentile) z_max = np.percentile(all_vertices[:, 2], upper_percentile) # 确保边界至少能容纳相机 min_width = camera_config.width + 2 * margin min_height = camera_config.height + 2 * margin min_depth = camera_config.depth + 2 * margin # 应用边界内缩 x_min += margin x_max -= margin y_min += margin y_max -= margin z_min += margin z_max -= margin # 确保边界足够大 if x_max - x_min < min_width: center_x = (x_min + x_max) / 2 x_min = center_x - min_width / 2 x_max = center_x + min_width / 2 if y_max - y_min < min_height: center_y = (y_min + y_max) / 2 y_min = center_y - min_height / 2 y_max = center_y + min_height / 2 if z_max - z_min < min_depth: center_z = (z_min + z_max) / 2 z_min = center_z - min_depth / 2 z_max = center_z + min_depth / 2 # 计算中心和尺寸 center = [(x_min + x_max) / 2, (y_min + y_max) / 2, (z_min + z_max) / 2] size = [x_max - x_min, y_max - y_min, z_max - z_min] # 统计被修剪的顶点 trimmed_mask = ( (all_vertices[:, 0] < x_min - margin) | (all_vertices[:, 0] > x_max + margin) | (all_vertices[:, 1] < y_min - margin) | (all_vertices[:, 1] > y_max + margin) | (all_vertices[:, 2] < z_min - margin) | (all_vertices[:, 2] > z_max + margin) ) trimmed_count = trimmed_mask.sum() return { 'x_min': x_min, 'x_max': x_max, 'y_min': y_min, 'y_max': y_max, 'z_min': z_min, 'z_max': z_max, 'center': center, 'size': size, 'trimmed_vertices_count': int(trimmed_count), 'total_vertices': total_vertices, 'trim_percent': trim_percent, 'camera_config': camera_config } def sample_positions_fixed_heights(bounds, num_samples_per_height=5, num_heights=3, min_distance=None): """ 在固定高度上采样相机位置(XY平面泊松圆盘采样) Args: bounds: dict, 场景边界信息 num_samples_per_height: 每个高度层采样多少个位置 num_heights: 使用几个高度层(默认3个) min_distance: XY平面上点之间的最小距离(cm),None则自动计算 Returns: list of [x, y, z]: 所有采样位置(纯Python float类型) """ # 计算高度 z_min = bounds['z_min'] z_max = bounds['z_max'] z_levels = np.linspace(z_min, z_max, num_heights+2) selected_heights = z_levels[1:-1] print(f"Z轴范围: [{z_min:.1f}, {z_max:.1f}] cm") print(f"选择的{num_heights}个高度: {[f'{z:.1f}' for z in selected_heights]}") # 如果没有指定最小距离,自动计算 if min_distance is None: area = (bounds['x_max'] - bounds['x_min']) * (bounds['y_max'] - bounds['y_min']) avg_area_per_sample = area / num_samples_per_height min_distance = np.sqrt(avg_area_per_sample) * 0.8 print(f"自动计算最小距离: {min_distance:.1f} cm") # 在每个高度上采样XY位置 all_positions = [] for i, height in enumerate(selected_heights): print(f"采样高度层 {i+1}/{num_heights}: Z={height:.1f} cm...", end=" ") xy_positions = sample_xy_poisson( bounds, float(height), # 转换为float num_samples_per_height, min_distance ) all_positions.extend(xy_positions) print(f"完成 ({len(xy_positions)} 个点)") print(f"总采样点数: {len(all_positions)}") return all_positions def sample_xy_poisson(bounds, z_height, num_samples, min_distance): """ 在固定Z高度的XY平面上泊松圆盘采样 Args: bounds: dict, 场景边界 z_height: 固定的Z高度 num_samples: 目标采样数量 min_distance: XY平面上点之间的最小距离(cm) Returns: list of [x, y, z]: 采样位置(纯Python float类型) """ positions = [] max_attempts = num_samples * 100 attempts = 0 # 第一个点:在中心附近随机选择 first_pos = [ float(np.random.uniform(bounds['x_min'], bounds['x_max'])), float(np.random.uniform(bounds['y_min'], bounds['y_max'])), float(z_height) ] positions.append(first_pos) # 活跃点列表 active_list = [0] while len(positions) < num_samples and attempts < max_attempts: attempts += 1 if len(active_list) == 0: break # 从活跃列表中随机选择一个点 idx = np.random.randint(0, len(active_list)) active_idx = active_list[idx] base_pos = np.array(positions[active_idx][:2]) # 只取XY坐标 # 尝试在该点周围生成新点 found = False for _ in range(30): # 在min_distance到2*min_distance之间随机选择距离 angle = np.random.uniform(0, 2 * np.pi) distance = np.random.uniform(min_distance, 2 * min_distance) # 生成新候选点(只在XY平面) new_xy = base_pos + distance * np.array([np.cos(angle), np.sin(angle)]) new_pos = [float(new_xy[0]), float(new_xy[1]), float(z_height)] # 检查是否在边界内 if not (bounds['x_min'] <= new_pos[0] <= bounds['x_max'] and bounds['y_min'] <= new_pos[1] <= bounds['y_max']): continue # 检查与所有现有点的距离(只考虑XY平面) if len(positions) > 0: existing_xy = np.array([p[:2] for p in positions]) distances = np.linalg.norm(existing_xy - new_xy, axis=1) if np.all(distances >= min_distance): positions.append(new_pos) active_list.append(len(positions) - 1) found = True break # 如果该活跃点无法生成新点,从活跃列表中移除 if not found: active_list.pop(idx) # 如果泊松采样没有达到目标数量,用简单的随机采样补充 if len(positions) < num_samples: while len(positions) < num_samples: candidate = [ float(np.random.uniform(bounds['x_min'], bounds['x_max'])), float(np.random.uniform(bounds['y_min'], bounds['y_max'])), float(z_height) ] existing_xy = np.array([p[:2] for p in positions]) candidate_xy = np.array(candidate[:2]) distances = np.linalg.norm(existing_xy - candidate_xy, axis=1) if np.all(distances >= min_distance * 0.5): positions.append(candidate) return positions[:num_samples] # Sample Look at Camera for placement from math import pi, cos, sin, acos @dataclass class CameraPose: """存储相机位姿,包括位置和观察目标点""" position: List[float] look_at: List[float] def _generate_points_on_sphere(num_points: int, target_center: np.ndarray, distance: float, z_min_ratio=-0.2) -> List[np.ndarray]: """ 使用斐波那契晶格在球面上生成均匀分布的点。 Args: num_points: 要生成的点数。 target_center: 球心(即目标物体中心)。 distance: 球体半径(即相机与物体的距离)。 z_min_ratio: Z轴方向的最小余弦值,用于限制采样范围(例如,避免从正下方采样)。 -1.0 为完整球体,0.0 为上半球。默认 -0.2,稍微偏下一点。 Returns: List of np.ndarray: 球面上的点坐标列表。 """ points = [] phi = pi * (3. - np.sqrt(5.)) # 黄金角 for i in range(num_points): # 均匀分布在 [-1, 1] 之间 y = 1 - (i / float(num_points - 1)) * 2 # 限制垂直范围 if y < z_min_ratio: continue radius = np.sqrt(1 - y * y) # 当前高度的半径 theta = phi * i # 黄金角增量 x = cos(theta) * radius z = sin(theta) * radius # 从单位向量转换为世界坐标 point_on_sphere = np.array([x, y, z]) * distance + target_center points.append(point_on_sphere) return points def sample_cameras_around_targets( target_object_indices: List[int], object_vertices_list: List[np.ndarray], scene_bounds: Dict, samples_per_target: int = 20, dist_factor_min: float = 2.0, dist_factor_max: float = 3.5, camera_config: Optional[CameraConfig] = None, collision_threshold: float = 0.0 ) -> List[CameraPose]: """ 围绕指定的目标物体采样相机位姿。 Args: target_object_indices: 目标物体的索引列表。 object_vertices_list: 场景中所有物体的顶点列表。 scene_bounds: 场景的边界信息(由 compute_scene_bounds 生成)。 samples_per_target: 每个目标物体周围尝试采样的相机数量。 dist_factor_min: 计算相机距离的最小系数(乘以物体AABB对角线长度)。 dist_factor_max: 计算相机距离的最大系数。 camera_config: 相机配置。 collision_threshold: 碰撞检测的IoU阈值。 Returns: List[CameraPose]: 所有有效的相机位姿列表。 """ if camera_config is None: camera_config = DEFAULT_CAMERA print(f"开始围绕 {len(target_object_indices)} 个目标物体进行采样...") # 预先计算所有物体的AABB信息 all_object_aabbs = [compute_aabb_from_vertices(verts) for verts in object_vertices_list] valid_camera_poses = [] for target_idx in target_object_indices: if not 0 <= target_idx < len(all_object_aabbs): print(f"警告: 目标索引 {target_idx} 超出范围,已跳过。") continue target_aabb = all_object_aabbs[target_idx] target_center = target_aabb['center'] # 基于AABB对角线长度计算合适的相机距离 aabb_diagonal = np.linalg.norm(np.array(target_aabb['extent']) * 2) cam_distance = np.random.uniform( aabb_diagonal * dist_factor_min, aabb_diagonal * dist_factor_max ) print(f"\n正在处理目标物体 {target_idx}:") print(f" - 中心点: [{target_center[0]:.1f}, {target_center[1]:.1f}, {target_center[2]:.1f}]") print(f" - AABB对角线长度: {aabb_diagonal:.1f} cm") print(f" - 采样距离: {cam_distance:.1f} cm") # 在目标周围的球面上生成候选点 candidate_positions = _generate_points_on_sphere( samples_per_target, target_center, cam_distance ) valid_count = 0 for i, pos in enumerate(candidate_positions): # 1. 检查是否在场景边界内 if not (scene_bounds['x_min'] <= pos[0] <= scene_bounds['x_max'] and scene_bounds['y_min'] <= pos[1] <= scene_bounds['y_max'] and scene_bounds['z_min'] <= pos[2] <= scene_bounds['z_max']): continue # 2. 检查与场景中所有物体的碰撞 collision_info = check_camera_collision( camera_position=pos, object_vertices_list=object_vertices_list, camera_config=camera_config, collision_threshold=collision_threshold, use_improved_search=True # 推荐使用改进的搜索 ) # 如果没有发生碰撞 if not collision_info['collision']: pose = CameraPose( position=[float(p) for p in pos], look_at=[float(c) for c in target_center] ) valid_camera_poses.append(pose) valid_count += 1 print(f" - 生成了 {len(candidate_positions)} 个候选位置,其中 {valid_count} 个有效。") print(f"\n采样完成。总共获得了 {len(valid_camera_poses)} 个有效的相机位姿。") return valid_camera_poses