bert-finetuned-with-synth
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1308
- Precision: 0.9209
- Recall: 0.9290
- F1: 0.9249
- Accuracy: 0.9825
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.230086668763943e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.1215 | 1.0 | 2503 | 0.0948 | 0.8820 | 0.9058 | 0.8937 | 0.9770 |
| 0.0582 | 2.0 | 5006 | 0.0967 | 0.8819 | 0.9174 | 0.8993 | 0.9777 |
| 0.027 | 3.0 | 7509 | 0.0963 | 0.8919 | 0.9137 | 0.9027 | 0.9789 |
| 0.0378 | 4.0 | 10012 | 0.1103 | 0.9057 | 0.9228 | 0.9141 | 0.9794 |
| 0.0448 | 5.0 | 12515 | 0.1043 | 0.9093 | 0.9249 | 0.9171 | 0.9813 |
| 0.0084 | 6.0 | 15018 | 0.1209 | 0.9057 | 0.9229 | 0.9142 | 0.9806 |
| 0.0003 | 7.0 | 17521 | 0.1266 | 0.9166 | 0.9253 | 0.9209 | 0.9814 |
| 0.0068 | 8.0 | 20024 | 0.1161 | 0.9164 | 0.9295 | 0.9229 | 0.9820 |
| 0.0113 | 9.0 | 22527 | 0.1255 | 0.9202 | 0.9291 | 0.9246 | 0.9824 |
| 0.0002 | 10.0 | 25030 | 0.1308 | 0.9209 | 0.9290 | 0.9249 | 0.9825 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 5
Model tree for arimmean/bert-finetuned-with-synth
Base model
BAAI/bge-small-en-v1.5