new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 11

AI-native Memory 2.0: Second Me

Human interaction with the external world fundamentally involves the exchange of personal memory, whether with other individuals, websites, applications, or, in the future, AI agents. A significant portion of this interaction is redundant, requiring users to repeatedly provide the same information across different contexts. Existing solutions, such as browser-stored credentials, autofill mechanisms, and unified authentication systems, have aimed to mitigate this redundancy by serving as intermediaries that store and retrieve commonly used user data. The advent of large language models (LLMs) presents an opportunity to redefine memory management through an AI-native paradigm: SECOND ME. SECOND ME acts as an intelligent, persistent memory offload system that retains, organizes, and dynamically utilizes user-specific knowledge. By serving as an intermediary in user interactions, it can autonomously generate context-aware responses, prefill required information, and facilitate seamless communication with external systems, significantly reducing cognitive load and interaction friction. Unlike traditional memory storage solutions, SECOND ME extends beyond static data retention by leveraging LLM-based memory parameterization. This enables structured organization, contextual reasoning, and adaptive knowledge retrieval, facilitating a more systematic and intelligent approach to memory management. As AI-driven personal agents like SECOND ME become increasingly integrated into digital ecosystems, SECOND ME further represents a critical step toward augmenting human-world interaction with persistent, contextually aware, and self-optimizing memory systems. We have open-sourced the fully localizable deployment system at GitHub: https://github.com/Mindverse/Second-Me.

  • 5 authors
·
Mar 11, 2025 2

compar:IA: The French Government's LLM arena to collect French-language human prompts and preference data

Large Language Models (LLMs) often show reduced performance, cultural alignment, and safety robustness in non-English languages, partly because English dominates both pre-training data and human preference alignment datasets. Training methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) require human preference data, which remains scarce and largely non-public for many languages beyond English. To address this gap, we introduce compar:IA, an open-source digital public service developed inside the French government and designed to collect large-scale human preference data from a predominantly French-speaking general audience. The platform uses a blind pairwise comparison interface to capture unconstrained, real-world prompts and user judgments across a diverse set of language models, while maintaining low participation friction and privacy-preserving automated filtering. As of 2026-02-07, compar:IA has collected over 600,000 free-form prompts and 250,000 preference votes, with approximately 89% of the data in French. We release three complementary datasets -- conversations, votes, and reactions -- under open licenses, and present initial analyses, including a French-language model leaderboard and user interaction patterns. Beyond the French context, compar:IA is evolving toward an international digital public good, offering reusable infrastructure for multilingual model training, evaluation, and the study of human-AI interaction.

Creating General User Models from Computer Use

Human-computer interaction has long imagined technology that understands us-from our preferences and habits, to the timing and purpose of our everyday actions. Yet current user models remain fragmented, narrowly tailored to specific apps, and incapable of the flexible reasoning required to fulfill these visions. This paper presents an architecture for a general user model (GUM) that learns about you by observing any interaction you have with your computer. The GUM takes as input any unstructured observation of a user (e.g., device screenshots) and constructs confidence-weighted propositions that capture that user knowledge and preferences. GUMs can infer that a user is preparing for a wedding they're attending from messages with a friend. Or recognize that a user is struggling with a collaborator's feedback on a draft by observing multiple stalled edits and a switch to reading related work. GUMs introduce an architecture that infers new propositions about a user from multimodal observations, retrieves related propositions for context, and continuously revises existing propositions. To illustrate the breadth of applications that GUMs enable, we demonstrate how they augment chat-based assistants with context, manage OS notifications to selectively surface important information, and enable interactive agents that adapt to preferences across apps. We also instantiate proactive assistants (GUMBOs) that discover and execute useful suggestions on a user's behalf using their GUM. In our evaluations, we find that GUMs make calibrated and accurate inferences about users, and that assistants built on GUMs proactively identify and perform actions that users wouldn't think to request explicitly. Altogether, GUMs introduce methods that leverage multimodal models to understand unstructured context, enabling long-standing visions of HCI and entirely new interactive systems that anticipate user needs.

  • 7 authors
·
May 16, 2025 2

ColorAgent: Building A Robust, Personalized, and Interactive OS Agent

With the advancements in hardware, software, and large language model technologies, the interaction between humans and operating systems has evolved from the command-line interface to the rapidly emerging AI agent interactions. Building an operating system (OS) agent capable of executing user instructions and faithfully following user desires is becoming a reality. In this technical report, we present ColorAgent, an OS agent designed to engage in long-horizon, robust interactions with the environment while also enabling personalized and proactive user interaction. To enable long-horizon interactions with the environment, we enhance the model's capabilities through step-wise reinforcement learning and self-evolving training, while also developing a tailored multi-agent framework that ensures generality, consistency, and robustness. In terms of user interaction, we explore personalized user intent recognition and proactive engagement, positioning the OS agent not merely as an automation tool but as a warm, collaborative partner. We evaluate ColorAgent on the AndroidWorld and AndroidLab benchmarks, achieving success rates of 77.2% and 50.7%, respectively, establishing a new state of the art. Nonetheless, we note that current benchmarks are insufficient for a comprehensive evaluation of OS agents and propose further exploring directions in future work, particularly in the areas of evaluation paradigms, agent collaboration, and security. Our code is available at https://github.com/MadeAgents/mobile-use.

  • 23 authors
·
Oct 22, 2025 2

Advances and Challenges in Conversational Recommender Systems: A Survey

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs in five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey can help to identify and address challenges in CRSs and inspire future research.

  • 5 authors
·
Jan 23, 2021

Left, Right, and Gender: Exploring Interaction Traces to Mitigate Human Biases

Human biases impact the way people analyze data and make decisions. Recent work has shown that some visualization designs can better support cognitive processes and mitigate cognitive biases (i.e., errors that occur due to the use of mental "shortcuts"). In this work, we explore how visualizing a user's interaction history (i.e., which data points and attributes a user has interacted with) can be used to mitigate potential biases that drive decision making by promoting conscious reflection of one's analysis process. Given an interactive scatterplot-based visualization tool, we showed interaction history in real-time while exploring data (by coloring points in the scatterplot that the user has interacted with), and in a summative format after a decision has been made (by comparing the distribution of user interactions to the underlying distribution of the data). We conducted a series of in-lab experiments and a crowd-sourced experiment to evaluate the effectiveness of interaction history interventions toward mitigating bias. We contextualized this work in a political scenario in which participants were instructed to choose a committee of 10 fictitious politicians to review a recent bill passed in the U.S. state of Georgia banning abortion after 6 weeks, where things like gender bias or political party bias may drive one's analysis process. We demonstrate the generalizability of this approach by evaluating a second decision making scenario related to movies. Our results are inconclusive for the effectiveness of interaction history (henceforth referred to as interaction traces) toward mitigating biased decision making. However, we find some mixed support that interaction traces, particularly in a summative format, can increase awareness of potential unconscious biases.

  • 5 authors
·
Aug 7, 2021

Improved Personalized Headline Generation via Denoising Fake Interests from Implicit Feedback

Accurate personalized headline generation hinges on precisely capturing user interests from historical behaviors. However, existing methods neglect personalized-irrelevant click noise in entire historical clickstreams, which may lead to hallucinated headlines that deviate from genuine user preferences. In this paper, we reveal the detrimental impact of click noise on personalized generation quality through rigorous analysis in both user and news dimensions. Based on these insights, we propose a novel Personalized Headline Generation framework via Denoising Fake Interests from Implicit Feedback (PHG-DIF). PHG-DIF first employs dual-stage filtering to effectively remove clickstream noise, identified by short dwell times and abnormal click bursts, and then leverages multi-level temporal fusion to dynamically model users' evolving and multi-faceted interests for precise profiling. Moreover, we release DT-PENS, a new benchmark dataset comprising the click behavior of 1,000 carefully curated users and nearly 10,000 annotated personalized headlines with historical dwell time annotations. Extensive experiments demonstrate that PHG-DIF substantially mitigates the adverse effects of click noise and significantly improves headline quality, achieving state-of-the-art (SOTA) results on DT-PENS. Our framework implementation and dataset are available at https://github.com/liukejin-up/PHG-DIF.