- Do Vision-Language Models See Urban Scenes as People Do? An Urban Perception Benchmark Understanding how people read city scenes can inform design and planning. We introduce a small benchmark for testing vision-language models (VLMs) on urban perception using 100 Montreal street images, evenly split between photographs and photorealistic synthetic scenes. Twelve participants from seven community groups supplied 230 annotation forms across 30 dimensions mixing physical attributes and subjective impressions. French responses were normalized to English. We evaluated seven VLMs in a zero-shot setup with a structured prompt and deterministic parser. We use accuracy for single-choice items and Jaccard overlap for multi-label items; human agreement uses Krippendorff's alpha and pairwise Jaccard. Results suggest stronger model alignment on visible, objective properties than subjective appraisals. The top system (claude-sonnet) reaches macro 0.31 and mean Jaccard 0.48 on multi-label items. Higher human agreement coincides with better model scores. Synthetic images slightly lower scores. We release the benchmark, prompts, and harness for reproducible, uncertainty-aware evaluation in participatory urban analysis. 1 authors · Sep 17, 2025
- Further Generalizations of the Jaccard Index Quantifying the similarity between two mathematical structures or datasets constitutes a particularly interesting and useful operation in several theoretical and applied problems. Aimed at this specific objective, the Jaccard index has been extensively used in the most diverse types of problems, also motivating some respective generalizations. The present work addresses further generalizations of this index, including its modification into a coincidence index capable of accounting also for the level of relative interiority between the two compared entities, as well as respective extensions for sets in continuous vector spaces, the generalization to multiset addition, densities and generic scalar fields, as well as a means to quantify the joint interdependence between two random variables. The also interesting possibility to take into account more than two sets has also been addressed, including the description of an index capable of quantifying the level of chaining between three structures. Several of the described and suggested eneralizations have been illustrated with respect to numeric case examples. It is also posited that these indices can play an important role while analyzing and integrating datasets in modeling approaches and pattern recognition activities, including as a measurement of clusters similarity or separation and as a resource for representing and analyzing complex networks. 1 authors · Oct 18, 2021