new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Myanmar XNLI: Building a Dataset and Exploring Low-resource Approaches to Natural Language Inference with Myanmar

Despite dramatic recent progress in NLP, it is still a major challenge to apply Large Language Models (LLM) to low-resource languages. This is made visible in benchmarks such as Cross-Lingual Natural Language Inference (XNLI), a key task that demonstrates cross-lingual capabilities of NLP systems across a set of 15 languages. In this paper, we extend the XNLI task for one additional low-resource language, Myanmar, as a proxy challenge for broader low-resource languages, and make three core contributions. First, we build a dataset called Myanmar XNLI (myXNLI) using community crowd-sourced methods, as an extension to the existing XNLI corpus. This involves a two-stage process of community-based construction followed by expert verification; through an analysis, we demonstrate and quantify the value of the expert verification stage in the context of community-based construction for low-resource languages. We make the myXNLI dataset available to the community for future research. Second, we carry out evaluations of recent multilingual language models on the myXNLI benchmark, as well as explore data-augmentation methods to improve model performance. Our data-augmentation methods improve model accuracy by up to 2 percentage points for Myanmar, while uplifting other languages at the same time. Third, we investigate how well these data-augmentation methods generalise to other low-resource languages in the XNLI dataset.

  • 2 authors
·
Apr 13, 2025

SofT-GRPO: Surpassing Discrete-Token LLM Reinforcement Learning via Gumbel-Reparameterized Soft-Thinking Policy Optimization

The soft-thinking paradigm for Large Language Model (LLM) reasoning can outperform the conventional discrete-token Chain-of-Thought (CoT) reasoning in some scenarios, underscoring its research and application value. However, while the discrete-token CoT reasoning pattern can be reinforced through policy optimization algorithms such as group relative policy optimization (GRPO), extending the soft-thinking pattern with Reinforcement Learning (RL) remains challenging. This difficulty stems from the complexities of injecting stochasticity into soft-thinking tokens and updating soft-thinking policies accordingly. As a result, previous attempts to combine soft-thinking with GRPO typically underperform their discrete-token GRPO counterparts. To fully unlock the potential of soft-thinking, this paper presents a novel policy optimization algorithm, SofT-GRPO, to reinforce LLMs under the soft-thinking reasoning pattern. SofT-GRPO injects the Gumbel noise into logits, employs the Gumbel-Softmax technique to avoid soft-thinking tokens outside the pre-trained embedding space, and leverages the reparameterization trick in policy gradient. We conduct experiments across base LLMs ranging from 1.5B to 7B parameters, and results demonstrate that SofT-GRPO enables soft-thinking LLMs to slightly outperform discrete-token GRPO on Pass@1 (+0.13% on average accuracy), while exhibiting a substantial uplift on Pass@32 (+2.19% on average accuracy). Codes and weights are available on https://github.com/zz1358m/SofT-GRPO-master

Bridging the Semantic Gap: Contrastive Rewards for Multilingual Text-to-SQL

Current Text-to-SQL methods are evaluated and only focused on executable queries, overlooking the semantic alignment challenge -- both in terms of the semantic meaning of the query and the correctness of the execution results. Even execution accuracy itself shows significant drops when moving from English to other languages, with an average decline of 6 percentage points across non-English languages. We address these challenges by presenting a new framework that combines Group Relative Policy Optimization (GRPO) within a multilingual contrastive reward signal to enhance both task efficiency and semantic accuracy in Text-to-SQL systems in cross-lingual scenarios. Our method teaches models to obtain better correspondence between SQL generation and user intent by combining a reward signal based on semantic similarity. On the seven-language MultiSpider dataset, fine-tuning the LLaMA-3-3B model with GRPO improved the execution accuracy up to 87.4 percent (+26 pp over zero-shot) and semantic accuracy up to 52.29 percent (+32.86 pp). Adding our contrastive reward signal in the GRPO framework further improved the average semantic accuracy to 59.14 percent (+6.85 pp, up to +10 pp for Vietnamese). Our experiments showcase that a smaller, parameter-efficient 3B LLaMA model fine-tuned with our contrastive reward signal outperforms a much larger zero-shot 8B LLaMA model, with an uplift of 7.43 pp in execution accuracy (from 81.43 percent on the 8B model to 88.86 percent on the 3B model), and nearly matches its semantic accuracy (59.14 percent vs. 68.57 percent) -- all using just 3,000 reinforcement learning training examples. These results demonstrate how we can improve the performance of Text-to-SQL systems with contrastive rewards for directed semantic alignment, without requiring large-scale training datasets.

  • 6 authors
·
Oct 9, 2025