new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

The Solar Neighborhood LV: Spectral Characterization of an Equatorial Sample of 580 K Dwarfs

We present a spectroscopic characterization of 580 K dwarfs within 33 pc, observed with the CHIRON echelle spectrograph (R=80,000) on the SMARTS 1.5m telescope. This volume-limited sample is part of the RKSTAR survey of sim4400 K dwarf primaries within 50 pc. Using Empirical SpecMatch and the diagnostic lines H-alpha (6562.8 Angstrom) and Li I (6707.8 Angstrom), we derive stellar properties, activity status, and age indicators calibrated against 35 benchmark K dwarfs with ages from 20 Myr to 5 Gyr. We find that 7.4% (43 stars) exhibit signatures of youth and/or chromospheric activity: 19 stars show lithium absorption indicating ages <1 Gyr, and 36 display Hα emission. Kinematic analysis using BANYAN Σ identifies 8 additional young stars through membership in the AB Doradus moving group and the Hyades cluster, bringing the total young/active population to 8.8% (51 stars). Stellar parameters span 3600--5500 K in \teff, -0.60 to +0.55 dex in [Fe/H], and <10 to >25 km s^{-1} in vsin i. A metal-poor population ([Fe/H] leq -0.50 dex) comprises 4\% of the sample. Galactic kinematics place 80% in the thin disk and 18.4% in the thick disk, with one halo member (HD 134439). Young and active stars are predominantly thin disk members, with two thick disk exceptions. Cross-matching with NASA's Exoplanet Archive reveals only 7.5% (44 stars) host confirmed planets as of July 2025. Our results identify 529 mature, inactive K dwarfs as prime targets for terrestrial planet searches, providing a crucial resource for exoplanet habitability studies in the solar neighborhood.

  • 8 authors
·
Jan 1

Location of a Sample of GeV and Optical Outbursts in the Jets of Blazars

The exact location of the gamma-ray emitting region in blazar jets has long been a matter of debate. However, the location has important implications about the emission processes, geometric and physical parameters of the jet, as well as the nature of interaction of the jet with the interstellar and intergalactic medium. Diverse conclusions have been drawn by various authors based on a variety of methods applied to different data sets of many blazars, e.g., the location is less than 0.1 pc from the central engine within the broad line region (BLR) or a few or tens of pc downstream beyond the dusty torus or at some intermediate distance. Here we use a method, established in a previous work, in which the location of the GeV/optical emission is determined using the ratio of energy dissipated during contemporaneous outbursts at those wave bands. We apply it to a total of 47 multi-wavelength outbursts in 10 blazars. We find that the location of the GeV/optical emission is beyond the BLR for all cases. This result is consistent with other studies, in which the location has been determined for a large sample of blazars. We compare the location determined by our method for several GeV outbursts of multiple blazars to that obtained by other authors using different methods. We find that our results are consistent in such one-to-one comparison in most cases, for which the required data were available.

  • 4 authors
·
May 5, 2025

Hyp-OC: Hyperbolic One Class Classification for Face Anti-Spoofing

Face recognition technology has become an integral part of modern security systems and user authentication processes. However, these systems are vulnerable to spoofing attacks and can easily be circumvented. Most prior research in face anti-spoofing (FAS) approaches it as a two-class classification task where models are trained on real samples and known spoof attacks and tested for detection performance on unknown spoof attacks. However, in practice, FAS should be treated as a one-class classification task where, while training, one cannot assume any knowledge regarding the spoof samples a priori. In this paper, we reformulate the face anti-spoofing task from a one-class perspective and propose a novel hyperbolic one-class classification framework. To train our network, we use a pseudo-negative class sampled from the Gaussian distribution with a weighted running mean and propose two novel loss functions: (1) Hyp-PC: Hyperbolic Pairwise Confusion loss, and (2) Hyp-CE: Hyperbolic Cross Entropy loss, which operate in the hyperbolic space. Additionally, we employ Euclidean feature clipping and gradient clipping to stabilize the training in the hyperbolic space. To the best of our knowledge, this is the first work extending hyperbolic embeddings for face anti-spoofing in a one-class manner. With extensive experiments on five benchmark datasets: Rose-Youtu, MSU-MFSD, CASIA-MFSD, Idiap Replay-Attack, and OULU-NPU, we demonstrate that our method significantly outperforms the state-of-the-art, achieving better spoof detection performance.

  • 2 authors
·
Apr 22, 2024