new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 12

Benchmarking ERP Analysis: Manual Features, Deep Learning, and Foundation Models

Event-related potential (ERP), a specialized paradigm of electroencephalographic (EEG), reflects neurological responses to external stimuli or events, generally associated with the brain's processing of specific cognitive tasks. ERP plays a critical role in cognitive analysis, the detection of neurological diseases, and the assessment of psychological states. Recent years have seen substantial advances in deep learning-based methods for spontaneous EEG and other non-time-locked task-related EEG signals. However, their effectiveness on ERP data remains underexplored, and many existing ERP studies still rely heavily on manually extracted features. In this paper, we conduct a comprehensive benchmark study that systematically compares traditional manual features (followed by a linear classifier), deep learning models, and pre-trained EEG foundation models for ERP analysis. We establish a unified data preprocessing and training pipeline and evaluate these approaches on two representative tasks, ERP stimulus classification and ERP-based brain disease detection, across 12 publicly available datasets. Furthermore, we investigate various patch-embedding strategies within advanced Transformer architectures to identify embedding designs that better suit ERP data. Our study provides a landmark framework to guide method selection and tailored model design for future ERP analysis. The code is available at https://github.com/DL4mHealth/ERP-Benchmark.

  • 5 authors
·
Jan 2

RAG-Driven Data Quality Governance for Enterprise ERP Systems

Enterprise ERP systems managing hundreds of thousands of employee records face critical data quality challenges when human resources departments perform decentralized manual entry across multiple languages. We present an end-to-end pipeline combining automated data cleaning with LLM-driven SQL query generation, deployed on a production system managing 240,000 employee records over six months. The system operates in two integrated stages: a multi-stage cleaning pipeline that performs translation normalization, spelling correction, and entity deduplication during periodic synchronization from Microsoft SQL Server to PostgreSQL; and a retrieval-augmented generation framework powered by GPT-4o that translates natural-language questions in Turkish, Russian, and English into validated SQL queries. The query engine employs LangChain orchestration, FAISS vector similarity search, and few-shot learning with 500+ validated examples. Our evaluation demonstrates 92.5% query validity, 95.1% schema compliance, and 90.7\% semantic accuracy on 2,847 production queries. The system reduces query turnaround time from 2.3 days to under 5 seconds while maintaining 99.2% uptime, with GPT-4o achieving 46% lower latency and 68% cost reduction versus GPT-3.5. This modular architecture provides a reproducible framework for AI-native enterprise data governance, demonstrating real-world viability at enterprise scale with 4.3/5.0 user satisfaction.

  • 7 authors
·
Nov 18, 2025

Efficient and Scalable Density Functional Theory Hamiltonian Prediction through Adaptive Sparsity

Hamiltonian matrix prediction is pivotal in computational chemistry, serving as the foundation for determining a wide range of molecular properties. While SE(3) equivariant graph neural networks have achieved remarkable success in this domain, their substantial computational cost--driven by high-order tensor product (TP) operations--restricts their scalability to large molecular systems with extensive basis sets. To address this challenge, we introduce SPHNet, an efficient and scalable equivariant network, that incorporates adaptive SParsity into Hamiltonian prediction. SPHNet employs two innovative sparse gates to selectively constrain non-critical interaction combinations, significantly reducing tensor product computations while maintaining accuracy. To optimize the sparse representation, we develop a Three-phase Sparsity Scheduler, ensuring stable convergence and achieving high performance at sparsity rates of up to 70%. Extensive evaluations on QH9 and PubchemQH datasets demonstrate that SPHNet achieves state-of-the-art accuracy while providing up to a 7x speedup over existing models. Beyond Hamiltonian prediction, the proposed sparsification techniques also hold significant potential for improving the efficiency and scalability of other SE(3) equivariant networks, further broadening their applicability and impact. Our code can be found at https://github.com/microsoft/SPHNet.

  • 10 authors
·
Feb 3, 2025